Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2003 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Chromosomal Region Maintenance 1 (CRM1)-dependent Nuclear Export of Smad Ubiquitin Regulatory Factor 1 (Smurf1) Is Essential for Negative Regulation of Transforming Growth Factor-β Signaling by Smad7

Authors: Yoshitaka, Tajima; Kouichiro, Goto; Minoru, Yoshida; Kenichi, Shinomiya; Toshihiro, Sekimoto; Yoshihiro, Yoneda; Kohei, Miyazono; +1 Authors

Chromosomal Region Maintenance 1 (CRM1)-dependent Nuclear Export of Smad Ubiquitin Regulatory Factor 1 (Smurf1) Is Essential for Negative Regulation of Transforming Growth Factor-β Signaling by Smad7

Abstract

Smad ubiquitin regulatory factor 1 (Smurf1), a HECT type E3 ubiquitin ligase, interacts with inhibitory Smad7 and induces translocation of Smad7 to the cytoplasm. Smurf1 then associates with the transforming growth factor (TGF)-beta type I receptor, TbetaR-I, enhancing turnover. However, the mechanism of nuclear export of Smad7 by Smurf1 has not been elucidated. Here we identified a functional nuclear export signal (NES) in a C-terminal region of Smurf1. In transfected cells, the Smurf1-Smad7 complex was accumulated in the cytoplasm by the nuclear export receptor, CRM1; this action was prevented by treatment with leptomycin B, a specific inactivator of CRM1 function. A green fluorescence protein fusion protein containing the C-terminal NES motif of Smurf1, located in the cytoplasm, accumulated in the nucleus following treatment with leptomycin B. Moreover, Smurf1 was shown to bind physically to CRM1 through NES, and nuclear export of the Smurf1-Smad7 complex was prevented by mutations of Smurf1 within the NES. Finally, the Smurf1 NES mutant reduced inhibition by Smad7 of the transcriptional activation induced by TGF-beta. These results thus suggest that CRM1-dependent nuclear export of Smurf1 is essential for the negative regulation of TGF-beta signaling by Smad7.

Keywords

Transcription, Genetic, Ubiquitin-Protein Ligases, Molecular Sequence Data, Active Transport, Cell Nucleus, Receptors, Cytoplasmic and Nuclear, Exportin 1 Protein, Karyopherins, Smad7 Protein, DNA-Binding Proteins, Ligases, Protein Transport, Transforming Growth Factor beta, COS Cells, Trans-Activators, Animals, Humans, Amino Acid Sequence, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    81
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
81
Top 10%
Top 10%
Top 10%
gold