Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Virus Genesarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Virus Genes
Article . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Virus Genes
Article . 2018
versions View all 2 versions

Human cytomegalovirus-encoded miR-UL112 contributes to HCMV-mediated vascular diseases by inducing vascular endothelial cell dysfunction

Authors: Kai, Shen; Liyun, Xu; Dongdong, Chen; Weiguo, Tang; Yanyan, Huang;

Human cytomegalovirus-encoded miR-UL112 contributes to HCMV-mediated vascular diseases by inducing vascular endothelial cell dysfunction

Abstract

Human cytomegalovirus (HCMV) infection has been linked to the pathogenesis of vasculopathy by inducing dysfunction of vascular cells such as endothelial cells. Hcmv-miR-UL112 is the most well-characterized HCMV-encoded microRNA occurring in the plasma of patients with cardiovascular diseases such as hypertension, while the specific underlying pathophysiological mechanisms are yet to be defined. The current study investigated the effect of hcmv-miR-UL112 on the growth and proliferation of human umbilical vascular endothelial cells (HUVECs); it might also be associated with signaling pathways. An adenovirus vector was designed and synthesized to stably express hcmv-miR-UL112 in HUVECs. Cell Counting Kit-8 results showed that ectopically expressed hcmv-miR-UL112 can significantly increase the proliferation of HUVECs (p  2 fold change). Kyoto Encyclopedia of Genes and Genomes and Reactome Pathway, chosen as the functional annotation categories, were affected by hcmv-miR-UL112 adenovirus vector. The significantly altered pathways mainly include the mitogen-activated protein kinase signaling pathway, cell adhesion molecules, chemokine signaling pathway, cytokine-cytokine receptor interaction, circadian rhythm-mammal, mineral absorption, protein processing in the endoplasmic reticulum, proximal tubule bicarbonate reclamation, vasopressin-regulated water reabsorption, and arachidonic acid metabolism. In conclusion, hcmv-miR-UL112 could serve as a potential biomarker, and the miRNA-mediated regulation of signaling pathways might play significant roles in the physiological effects of hcmv-associated diseases.

Related Organizations
Keywords

Gene Expression Profiling, Cytomegalovirus, Endothelial Cells, Microarray Analysis, MicroRNAs, Cytomegalovirus Infections, Host-Pathogen Interactions, Human Umbilical Vein Endothelial Cells, Humans, Vascular Diseases, Cell Proliferation, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%