Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Circulationarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Circulation
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Circulation
Article . 2011 . Peer-reviewed
Data sources: Crossref
Circulation
Article . 2011
versions View all 5 versions

Placental Growth Factor Regulates Cardiac Inflammation Through the Tissue Inhibitor of Metalloproteinases-3/Tumor Necrosis Factor-α–Converting Enzyme Axis

Crucial Role for Adaptive Cardiac Remodeling During Cardiac Pressure Overload
Authors: CARNEVALE, DANIELA; CIFELLI, GIUSEPPE; MASCIO, GIADA; Michele Madonna; Mauro Sbroggio; PERRINO, CINZIA; Maria Grazia Persico; +2 Authors

Placental Growth Factor Regulates Cardiac Inflammation Through the Tissue Inhibitor of Metalloproteinases-3/Tumor Necrosis Factor-α–Converting Enzyme Axis

Abstract

Background— Heart failure is one of the leading causes of mortality and is primarily the final stage of several overload cardiomyopathies, preceded by an early adaptive hypertrophic response and characterized by coordinated cardiomyocyte growth, angiogenesis, and inflammation. Therefore, growth factors and cytokines have to be critically regulated during cardiac response to transverse aortic constriction. Interestingly, the dual properties of placental growth factor as an angiogenic factor and cytokine make it a candidate to participate in cardiac remodeling in response to hemodynamic overload. Methods and Results— After transverse aortic constriction, placental growth factor knockout mice displayed a dysregulation of cardiac remodeling, negatively affecting muscle growth. Molecular insights underscored that this effect was ascribable mainly to a failure in the establishment of adequate inflammatory response owing to an impaired activity of tumor necrosis factor-α–converting enzyme. Interestingly, after transverse aortic constriction, placental growth factor knockout mice had strongly increased levels of tissue inhibitor of metalloproteinases-3, the main natural TACE inhibitor, thus indicating an unbalance of the tissue inhibitor of metalloproteinases-3/tumor necrosis factor-α–converting enzyme axis. Strikingly, when we used an in vivo RNA interference approach to reduce tissue inhibitor of metalloproteinases-3 levels in placental growth factor knockout mice during transverse aortic constriction, we obtained a complete phenotype rescue of early dilated cardiomyopathy. Conclusions— Our results demonstrate that placental growth factor finely tunes a balanced regulation of the tissue inhibitor of metalloproteinases-3/tumor necrosis factor-α–converting enzyme axis and the consequent TNF-α activation in response to transverse aortic constriction, thus allowing the establishment of an inflammatory response necessary for adaptive cardiac remodeling.

Country
Italy
Keywords

Cardiomyopathy, Dilated, Male, Mice, Knockout, Tissue Inhibitor of Metalloproteinase-3, ADAM17 Protein, Pregnancy Proteins, Adaptation, Physiological, Coronary Vessels, Up-Regulation, Mice, Inbred C57BL, ADAM Proteins, Disease Models, Animal, Mice, Myocarditis, Animals, rna; small interfering; scompenso cardiaco; inflammation; growth substances; infiammazione; heart failure; ventricular remodeling; fattori di crescita, Hypertrophy, Left Ventricular, Matrix Metalloproteinase 3, Myocytes, Cardiac, Aorta, Placenta Growth Factor

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    56
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
56
Top 10%
Top 10%
Top 10%
bronze