Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1038/srep42...
Article . 2017 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.nature.com/article...
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2017
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions

Peripheral sensory neuron injury contributes to neuropathic pain in experimental autoimmune encephalomyelitis

Authors: Chen-Yen Chung; Cheng-Han Lee; Chih-Cheng Chen; Chih-Cheng Chen; Fang Liao; I-Ching Wang;

Peripheral sensory neuron injury contributes to neuropathic pain in experimental autoimmune encephalomyelitis

Abstract

AbstractMultiple sclerosis (MS)-induced neuropathic pain deteriorates quality of life in patients but is often refractory to treatment. In experimental autoimmune encephalomyelitis (EAE), a rodent model of MS, animals develop neuropathy and inflammation-induced tissue acidosis, which suggests the involvement of acid-sensing ion channels (ASICs). Also, peripheral neuropathy is reported in MS patients. However, the involvement of the peripheral nervous system (PNS) in MS neuropathic pain remains elusive. This study investigated the contribution of ASICs and peripheral neuropathy in MS-induced neuropathic pain. Elicited pain levels were as high in Asic1a−/−, Asic2−/− and Asic3−/− mice as wild-type mice even though only Asic1a−/− mice showed reduced EAE disease severity, which indicates that pain in EAE was independent of disease severity. We thus adopted an EAE model without pertussis toxin (EAEnp) to restrain activated immunity in the periphery and evaluate the PNS contribution to pain. Both EAE and EAEnp mice showed similar pain behaviors and peripheral neuropathy in nerve fibers and DRG neurons. Moreover, pregabalin significantly reduced neuropathic pain in both EAE and EAEnp mice. Our findings highlight the essential role of the PNS in neuropathic pain in EAE and pave the way for future development of analgesics without side effects in the CNS.

Keywords

Mice, Knockout, Analgesics, Encephalomyelitis, Autoimmune, Experimental, Lumbar Vertebrae, Sensory Receptor Cells, Pregabalin, Motor Activity, Article, Acid Sensing Ion Channels, Hyperalgesia, Ganglia, Spinal, Peripheral Nervous System, Animals, Neuralgia, Microglia, Gray Matter, Peptides, Myelin Sheath, Demyelinating Diseases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Average
Top 10%
Green
gold