Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plant Molecular Biol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Plant Molecular Biology
Article . 1999 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 3 versions

Identification of a rice APETALA3 homologue by yeast two-hybrid screening

Authors: Moon, YH; Jung, JY; Kang, HG; An, GH;

Identification of a rice APETALA3 homologue by yeast two-hybrid screening

Abstract

A cDNA clone OsMADS16 was isolated from the rice young inflorescence cDNA expression library by the yeast two-hybrid screening method with OsMADS4 as bait. We have previously shown that the OsMADS4 gene is a member of the PI family and that the MADS-box gene is involved in controlling development of the second and third whorls of rice flowers. The sequence comparison indicated that OsMADS16 belongs to the AP3 family. The OsMADS16 protein contains a PI-derived motif, FAFRVVPSQPNLH, that is a conserved sequence in AP3 family genes at the C-terminal region. In addition, OsMADS16 contains a paleoAP3 motif, YGGNHDLRLG, downstream of the PI-derived motif. The paleoAP3 motif is a consensus sequence in the C-terminal region of the AP3 family genes of lower eudicot and magnolid dicot species. RNA blot analysis showed that the OsMADS16 gene was expressed in the second and third whorls, whereas the OsMADS4 transcripts were present in the second, third, and fourth whorls. These expression patterns of the OsMADS16 and OsMADS4 genes are very similar to those of AP3 and PI, respectively. In the yeast two-hybrid system, OsMADS4 interacted only with OsMADS16 among several rice MADS genes investigated, suggesting that OsMADS4 and OsMADS16 function as a heterodimer in specifying sepal and petal identities. The OsMADS16 protein displayed transcription activation ability in yeast, whereas AP3 did not. It was also shown in yeast that OsMADS16 interacted with PI whereas OsMADS4 did not interact with AP3. These differences between OsMADS16 and AP3 indicate that the functions of the AP3 family genes of monocots and dicots diverged during molecular evolution processes of the B function genes. Deletion analysis showed that the 155-200 amino acid region of the OsMADS16 protein plays an important role in the transcription activation ability.

Related Organizations
Keywords

Transcriptional Activation, DNA-BINDING, Molecular Sequence Data, yeast two-hybrid system, MADS Domain Proteins, HOMEOTIC PROTEINS APETALA1, ECTOPIC EXPRESSION, Saccharomyces cerevisiae, Genes, Plant, protein-protein interaction, Tissue Distribution, TRANSCRIPTION FACTOR, MOLECULAR CHARACTERIZATION, MULTIGENE FAMILY, Amino Acid Sequence, Cloning, Molecular, FLORAL ORGAN IDENTITY, FLOWER DEVELOPMENT, Plant Proteins, Homeodomain Proteins, Sequence Homology, Amino Acid, ANTIRRHINUM-MAJUS, Arabidopsis Proteins, rice, transcription activation, APETALA3, Oryza, MADS-BOX GENE, DNA-Binding Proteins, MADS gene, Protein Binding, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    123
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
123
Top 10%
Top 10%
Top 10%