Functional specialization of the yeast Rho1 GTP exchange factors
doi: 10.1242/jcs.100685
pmid: 22344253
Functional specialization of the yeast Rho1 GTP exchange factors
Rho GTPases are regulated in complex spatiotemporal patterns that may be dependent, in part at least, on the multiplicity of their GTP exchange factors (GEFs). Here, we examine the extent of and basis for functional specialization of the Rom2 and Tus1 GEFs that activate the yeast Rho1 GTPase, the ortholog of mammalian RhoA. First, we find that these GEFs selectively activate different Rho1-effector branches. Second, the synthetic genetic networks around ROM2 and TUS1 confirm very different global in vivo roles for these GEFs. Third, the GEFs are not functionally interchangeable: Tus1 cannot replace the essential role of Rom2, even when overexpressed. Fourth, we find that Rom2 and Tus1 localize differently: Rom2 to the growing bud surface and to the bud neck at cytokinesis; Tus1 only to the bud neck but in a distinct pattern. Finally, we find that these GEFs are dependent on different protein co-factors: Rom2 function and localization is largely dependent on Ack1, a SEL1 domain containing protein; Tus1 function and localization is largely dependent on the Tus1-interacting protein Ypl066w (which we name Rgl1). We have revealed a surprising level of diversity among the Rho1 GEFs that contributes another level of complexity to the spatiotemporal control of Rho1.
- Lancaster University United Kingdom
- University of Glasgow United Kingdom
- Dalhousie University Canada
rho GTP-Binding Proteins, 570, Saccharomyces cerevisiae Proteins, Time Factors, Saccharomyces cerevisiae, QH301, QH345, Protein Transport, Mutation, Guanine Nucleotide Exchange Factors, Gene Regulatory Networks, Guanosine Triphosphate, QH426, Signal Transduction
rho GTP-Binding Proteins, 570, Saccharomyces cerevisiae Proteins, Time Factors, Saccharomyces cerevisiae, QH301, QH345, Protein Transport, Mutation, Guanine Nucleotide Exchange Factors, Gene Regulatory Networks, Guanosine Triphosphate, QH426, Signal Transduction
20 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2002IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).26 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
