Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLoS ONEarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2008 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2008
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2008
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2008
Data sources: DOAJ
versions View all 4 versions

Mitogen-Activated Protein Kinases Regulate Susceptibility to Ventilator-Induced Lung Injury

Authors: Dolinay, T; Wu, W; Kaminski, N; Ifedigbo, E; Kaynar, AM; Szilasi, M; Watkins, SC; +3 Authors

Mitogen-Activated Protein Kinases Regulate Susceptibility to Ventilator-Induced Lung Injury

Abstract

Mechanical ventilation causes ventilator-induced lung injury in animals and humans. Mitogen-activated protein kinases have been implicated in ventilator-induced lung injury though their functional significance remains incomplete. We characterize the role of p38 mitogen-activated protein kinase/mitogen activated protein kinase kinase-3 and c-Jun-NH(2)-terminal kinase-1 in ventilator-induced lung injury and investigate novel independent mechanisms contributing to lung injury during mechanical ventilation.C57/BL6 wild-type mice and mice genetically deleted for mitogen-activated protein kinase kinase-3 (mkk-3(-/-)) or c-Jun-NH(2)-terminal kinase-1 (jnk1(-/-)) were ventilated, and lung injury parameters were assessed. We demonstrate that mkk3(-/-) or jnk1(-/-) mice displayed significantly reduced inflammatory lung injury and apoptosis relative to wild-type mice. Since jnk1(-/-) mice were highly resistant to ventilator-induced lung injury, we performed comprehensive gene expression profiling of ventilated wild-type or jnk1(-/-) mice to identify novel candidate genes which may play critical roles in the pathogenesis of ventilator-induced lung injury. Microarray analysis revealed many novel genes differentially expressed by ventilation including matrix metalloproteinase-8 (MMP8) and GADD45alpha. Functional characterization of MMP8 revealed that mmp8(-/-) mice were sensitized to ventilator-induced lung injury with increased lung vascular permeability.We demonstrate that mitogen-activated protein kinase pathways mediate inflammatory lung injury during ventilator-induced lung injury. C-Jun-NH(2)-terminal kinase was also involved in alveolo-capillary leakage and edema formation, whereas MMP8 inhibited alveolo-capillary protein leakage.

Keywords

Science, 610, Capillary Permeability, Mice, computational biology, cell biology, genomics, cell signaling, Animals, Edema, Mitogen-Activated Protein Kinase 8, Inflammation, Ventilators, Mechanical, cellular death and stress responses, Q, respiratory failure, R, JNK Mitogen-Activated Protein Kinases, Lung Injury, Respiration, Artificial, Medicine, respiratory medicine, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    80
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
80
Top 10%
Top 10%
Top 1%
Green
gold