Charge-spin duality in nonequilibrium transport of helical liquids
arXiv: 1008.1195
Charge-spin duality in nonequilibrium transport of helical liquids
Non-equilibrium transport properties of charge and spin sector of two edges of a quantum spin Hall insulator are investigated theoretically in a four-terminal configuration. A simple duality relation between charge and spin sector is found for two helical Tomonaga Luttinger liquids (hTTLs) connected to non-interacting electron reservoirs. If the hTLLs on opposite edges are coupled locally or non-locally, the mixing between them yields interesting physics where spin information can be easily detected by a charge measurement and vice versa. Particularly, we show how a pure spin density in the absence of charge current can be generated in a setup that contains two hTLL and one spinful Tomonaga Luttinger liquid in between.
12 pages and 3 figures
- University of Würzburg Germany
Condensed Matter - Strongly Correlated Electrons, Condensed Matter - Mesoscale and Nanoscale Physics, Strongly Correlated Electrons (cond-mat.str-el), Mesoscale and Nanoscale Physics (cond-mat.mes-hall), FOS: Physical sciences
Condensed Matter - Strongly Correlated Electrons, Condensed Matter - Mesoscale and Nanoscale Physics, Strongly Correlated Electrons (cond-mat.str-el), Mesoscale and Nanoscale Physics (cond-mat.mes-hall), FOS: Physical sciences
3 Research products, page 1 of 1
- 2019IsAmongTopNSimilarDocuments
- 2009IsAmongTopNSimilarDocuments
- 2009IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).50 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
