Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 1987 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
Molecular and Cellular Biology
Article . 1987 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Identification and Regulation of a Gene Required for Cell Fusion during Mating of the Yeast Saccharomyces cerevisiae

Authors: G, McCaffrey; F J, Clay; K, Kelsay; G F, Sprague;

Identification and Regulation of a Gene Required for Cell Fusion during Mating of the Yeast Saccharomyces cerevisiae

Abstract

We have devised a screen for genes from the yeast Saccharomyces cerevisiae whose expression is affected by cell type or by the mating pheromones. From this screen we identified a gene, FUS1, whose pattern of expression revealed interesting regulatory strategies and whose product was required for efficient cell fusion during mating. Transcription of FUS1 occurred only in a and alpha cells, not in a/alpha cells, where it was repressed by a1 X alpha 2, a regulatory activity present uniquely in a/alpha cells. Transcription of FUS1 showed an absolute requirement for the products of five STE genes, STE4, STE5, STE7, STE11, and STE12. Since the activators STE4, STE5, and STE12 are themselves repressed by a1 X alpha 2, the failure to express FUS1 in a/alpha cells is probably the result of a cascade of regulatory activities; repression of the activators by a1 X alpha 2 in turn precludes transcription of FUS1. In addition to regulation of FUS1 by cell type, transcription from the locus increased 10-fold or more when a or alpha cells were exposed to the opposing mating pheromone. To investigate the function of the Fus1 protein, we created fus1 null mutants. In fus1 X fus1 matings, the cells of a mating pair adhered tightly and appeared to form zygotes. However, the zygotes were abnormal. Within the conjugation bridge the contained a partition that prevented nuclear fusion and mixing of organelles. The predicted sequence of the Fus1 protein (deduced from the FUS1 DNA sequence) and subcellular fractionation studies with Fus1-beta-galactosidase hybrid proteins suggest that Fus1 is a membrane or secreted protein. Thus, Fus1 may be located at a position within the cell where it is poised to catalyze cell wall or plasma membrane fusion.

Related Organizations
Keywords

Base Sequence, Genotype, Genes, Fungal, Saccharomyces cerevisiae, Pheromones, Genes, Genes, Regulator, Amino Acid Sequence, Mating Factor, Peptides, Crosses, Genetic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    258
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
258
Top 10%
Top 1%
Top 1%
bronze