Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Protein Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Protein Science
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Protein Science
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Protein Science
Article . 2021
versions View all 2 versions

Conserved buried water molecules enable the β‐trefoil architecture

Authors: Michael Blaber;

Conserved buried water molecules enable the β‐trefoil architecture

Abstract

AbstractAvailable high‐resolution crystal structures for the family of β‐trefoil proteins in the structural databank were queried for buried waters. Such waters were classified as either: (a) unique to a particular domain, family, or superfamily or (b) conserved among all β‐trefoil folds. Three buried waters conserved among all β‐trefoil folds were identified. These waters are related by the threefold rotational pseudosymmetry characteristic of this protein architecture (representing three instances of an identical structural environment within each repeating trefoil‐fold motif). The structural properties of this buried water are remarkable and include: residing in a cavity space no larger than a single water molecule, exhibiting a positional uncertainty (i.e., normalized B‐factor) substantially lower than the average Cα atom, providing essentially ideal H‐bonding geometry with three solvent‐inaccessible main chain groups, simultaneously serving as a bridging H‐bond for three different β‐strands at a point of secondary structure divergence, and orienting conserved hydrophobic side chains to form a nascent core‐packing group. Other published work supports an interpretation that these interactions are key to the formation of an efficient folding nucleus and folded thermostability. The fundamental threefold symmetric structural element of the β‐trefoil fold is therefore, surprisingly, a buried water molecule.

Related Organizations
Keywords

Models, Molecular, Protein Folding, Protein Domains, Proteins, Hydrophobic and Hydrophilic Interactions, Protein Structure, Secondary

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
bronze