Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEBS Lettersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FEBS Letters
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Letters
Article . 2017 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
FEBS Letters
Article . 2017
versions View all 2 versions

Structure of the PX domain of SNX25 reveals a novel phospholipid recognition model by dimerization in the PX domain

Authors: Jiabin Zhu; Jiabin Zhu; Yulong Zhang; Yulong Zhang; Kai Su; Tingting Xu; Tingting Xu; +6 Authors

Structure of the PX domain of SNX25 reveals a novel phospholipid recognition model by dimerization in the PX domain

Abstract

SNX25, a regulator of GPCR signaling‐phox‐homology (PX) domain containing sorting nexin (SNX) member, has been proposed to be involved in the lysosomal degradation of the transforming growth factor β receptor and the development of temporal lobe epilepsy. Targeting to the endosomal membranes by the specific binding of phosphorylated phosphatidylinositols (PIPs) through the PX domain is critical for the function of SNXs. However, the mechanism for SNX25‐PX targeting to the endosomes remains unclear. Here, we demonstrate that the PX domain of zebrafish SNX25 (zSNX25‐PX) is capable of binding to PI3P only in its dimeric form. We also present the crystal structure of zSNX25‐PX. Combined with biochemical experiments, we further identify a potential PI3P‐binding region and propose a novel PI‐binding model based on dimerization in the PX domain of SNXs.

Related Organizations
Keywords

Molecular Docking Simulation, Protein Domains, Amino Acid Sequence, Protein Multimerization, Zebrafish Proteins, Phosphatidylinositols, Sorting Nexins, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Average
bronze