Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Gene
Article . 1998 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
Gene
Article . 1998
versions View all 2 versions

The DUG gene of Drosophila melanogaster encodes a structural and functional homolog of the S. cerevisiae SUG1 predicted ATPase associated with the 26S proteasome

Authors: L C, Mounkes; M T, Fuller;

The DUG gene of Drosophila melanogaster encodes a structural and functional homolog of the S. cerevisiae SUG1 predicted ATPase associated with the 26S proteasome

Abstract

The DUG gene of Drosophila encodes a putative ATPase that is a structural and functional homolog of the yeast SUG1 product. When introduced into S. cerevisiae, the Drosophila DUG gene rescued the lethality associated with a SUG1 mutant. Anti-DUG antibodies recognized a protein that migrated in high molecular weight complexes, along with components of the 26S proteasome, and also immunoprecipitated components of the 26S proteasome from embryonic extracts. Proteins recognized by the affinity-purified antibody raised against DUG were localized in either a punctate cytoplasmic distribution or in the nucleus, depending on the cell type, consistent with the subcellular localization of the 26S proteasome in various cell types.

Related Organizations
Keywords

Adenosine Triphosphatases, Proteasome Endopeptidase Complex, Saccharomyces cerevisiae Proteins, Sequence Homology, Amino Acid, Macromolecular Substances, Molecular Sequence Data, Gene Expression Regulation, Developmental, Genes, Insect, Saccharomyces cerevisiae, Cross Reactions, Precipitin Tests, Fungal Proteins, Repressor Proteins, Drosophila melanogaster, Animals, Cloning, Molecular, Conserved Sequence, Gene Deletion, Peptide Hydrolases, Subcellular Fractions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Top 10%
hybrid