Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuronarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuron
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuron
Article . 2003
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuron
Article . 2003 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Neuron
Article . 2004
versions View all 4 versions

FAK Deficiency in Cells Contributing to the Basal Lamina Results in Cortical Abnormalities Resembling Congenital Muscular Dystrophies

Authors: Hillary E. Beggs; Dorreyah Schahin-Reed; Jessica A. Gorski; Sandra Goebbels; Keling Zang; Klaus-Armin Nave; David W. Sretavan; +2 Authors

FAK Deficiency in Cells Contributing to the Basal Lamina Results in Cortical Abnormalities Resembling Congenital Muscular Dystrophies

Abstract

Targeted deletion of focal adhesion kinase (fak) in the developing dorsal forebrain resulted in local disruptions of the cortical basement membrane located between the neuroepithelium and pia-meninges. At disruption sites, clusters of neurons invaded the marginal zone. Retraction of radial glial endfeet, midline fusion of brain hemispheres, and gliosis also occurred, similar to type II cobblestone lissencephaly as seen in congenital muscular dystrophy. Interestingly, targeted deletion of fak in neurons alone did not result in cortical ectopias, indicating that fak deletion from glia is required for neuronal mislocalization. Unexpectedly, fak deletion specifically from meningeal fibroblasts elicited similar cortical ectopias in vivo and altered laminin organization in vitro. These observations provide compelling evidence that FAK plays a key signaling role in cortical basement membrane assembly and/or remodeling. In addition, FAK is required within neurons during development because neuron-specific fak deletion alters dendritic morphology in the absence of lamination defects.

Keywords

Cerebral Cortex, Calbindins, Extracellular Matrix Proteins, Neuroscience(all), Cell Adhesion Molecules, Neuronal, Blotting, Western, Fibroblasts, Embryo, Mammalian, Basement Membrane, DNA-Binding Proteins, Cytoskeletal Proteins, Disease Models, Animal, Bacterial Proteins, Astrocytes, Calbindin 2, Focal Adhesion Kinase 1, Animals, Dura Mater, Carrier Proteins, Dystroglycans, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    265
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
265
Top 10%
Top 1%
Top 1%
hybrid