Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2001
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2001 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

TNF Signaling via the Ligand–Receptor Pair Ectodysplasin and Edar Controls the Function of Epithelial Signaling Centers and Is Regulated by Wnt and Activin during Tooth Organogenesis

Authors: Laurikkala, Johanna; Mikkola, Marja; Mustonen, Tuija; Åberg, Thomas; Koppinen, Petra; Pispa, Johanna; Nieminen, Pekka; +3 Authors

TNF Signaling via the Ligand–Receptor Pair Ectodysplasin and Edar Controls the Function of Epithelial Signaling Centers and Is Regulated by Wnt and Activin during Tooth Organogenesis

Abstract

Ectodermal dysplasia syndromes affect the development of several organs, including hair, teeth, and glands. The recent cloning of two genes responsible for these syndromes has led to the identification of a novel TNF family ligand, ectodysplasin, and TNF receptor, edar. This has indicated a developmental regulatory role for TNFs for the first time. Our in situ hybridization analysis of the expression of ectodysplasin (encoded by the Tabby gene) and edar (encoded by the downless gene) during mouse tooth morphogenesis showed that they are expressed in complementary patterns exclusively in ectodermal tissue layer. Edar was expressed reiteratively in signaling centers regulating key steps in morphogenesis. The analysis of the effects of eight signaling molecules in the TGFbeta, FGF, Hh, Wnt, and EGF families in tooth explant cultures revealed that the expression of edar was induced by activinbetaA, whereas Wnt6 induced ectodysplasin expression. Moreover, ectodysplasin expression was downregulated in branchial arch epithelium and in tooth germs of Lef1 mutant mice, suggesting that signaling by ectodysplasin is regulated by LEF-1-mediated Wnt signals. The analysis of the signaling centers in tooth germs of Tabby mice (ectodysplasin null mutants) indicated that in the absence of ectodysplasin the signaling centers were small. However, no downstream targets of ectodysplasin signaling were identified among several genes expressed in the signaling centers. We conclude that ectodysplasin functions as a planar signal between ectodermal compartments and regulates the function, but not the induction, of epithelial signaling centers. This TNF signaling is tightly associated with epithelial-mesenchymal interactions and with other signaling pathways regulating organogenesis. We suggest that activin signaling from mesenchyme induces the expression of the TNF receptor edar in the epithelial signaling centers, thus making them responsive to Wnt-induced ectodysplasin from the nearby ectoderm. This is the first demonstration of integration of the Wnt, activin, and TNF signaling pathways.

Keywords

Male, Fibroblast Growth Factor 4, Mice, Inbred Strains, Bone Morphogenetic Protein 4, downless, Mice, epithelial–mesenchymal interactions, Tabby, Animals, Inhibins, Lef1, Molecular Biology, Crosses, Genetic, enamel knot, Epidermal Growth Factor, tooth development, Gene Expression Regulation, Developmental, Membrane Proteins, Epithelial Cells, Cell Biology, Ectodysplasins, Molar, Activins, Fibroblast Growth Factors, Bone Morphogenetic Proteins, Odontogenesis, Female, Mitogens, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    168
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
168
Top 10%
Top 10%
Top 1%
hybrid