The Predicted Candidates of Arabidopsis Plastid Inner Envelope Membrane Proteins and Their Expression Profiles,
The Predicted Candidates of Arabidopsis Plastid Inner Envelope Membrane Proteins and Their Expression Profiles,
Abstract Plastid envelope proteins from the Arabidopsis nuclear genome were predicted using computational methods. Selection criteria were: first, to find proteins with NH2-terminal plastid-targeting peptides from all annotated open reading frames from Arabidopsis; second, to search for proteins with membrane-spanning domains among the predicted plastidial-targeted proteins; and third, to subtract known thylakoid membrane proteins. Five hundred forty-one proteins were selected as potential candidates of the Arabidopsis plastid inner envelope membrane proteins (AtPEM candidates). Only 34% (183) of the AtPEM candidates could be assigned to putative functions based on sequence similarity to proteins of known function (compared with the 69% function assignment of the total predicted proteins in the genome). Of the 183 candidates with assigned functions, 40% were classified in the category of “transport facilitation,” indicating that this collection is highly enriched in membrane transporters. Information on the predicted proteins, tissue expression data from expressed sequence tags and microarrays, and publicly available T-DNA insertion lines were collected. The data set complements proteomic-based efforts in the increased detection of integral membrane proteins, low-abundance proteins, or those not expressed in tissues selected for proteomic analysis. Digital northern analysis of expressed sequence tags suggested that the transcript levels of most AtPEM candidates were relatively constant among different tissues in contrast to stroma and the thylakoid proteins. However, both digital northern and microarray analyses identified a number of AtPEM candidates with tissue-specific expression patterns.
- Michigan State University United States
Expressed Sequence Tags, Proteomics, Arabidopsis Proteins, Gene Expression Profiling, Arabidopsis, Protein Array Analysis, Vesicular Transport Proteins, Computational Biology, Membrane Proteins, Nuclear Proteins, Flowers, Plant Roots, Thylakoids, Substrate Specificity, Databases, Genetic, Seeds
Expressed Sequence Tags, Proteomics, Arabidopsis Proteins, Gene Expression Profiling, Arabidopsis, Protein Array Analysis, Vesicular Transport Proteins, Computational Biology, Membrane Proteins, Nuclear Proteins, Flowers, Plant Roots, Thylakoids, Substrate Specificity, Databases, Genetic, Seeds
45 Research products, page 1 of 5
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).54 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
