Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2016 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Deletions of Retinoblastoma 1 (Rb1) and Its Repressing Target S Phase Kinase-associated protein 2 (Skp2) Are Synthetic Lethal in Mouse Embryogenesis

Authors: Zhonglei Lu; Hao Fu; Liang Zhu; Jinhua Cui; Hongbo Wang; Frederick Bauzon; Hongling Zhao;

Deletions of Retinoblastoma 1 (Rb1) and Its Repressing Target S Phase Kinase-associated protein 2 (Skp2) Are Synthetic Lethal in Mouse Embryogenesis

Abstract

Tumor suppressor pRb represses Skp2, a substrate-recruiting subunit of the SCF(Skp2) ubiquitin ligase. Rb1(+/-) mice incur "two-hit" pituitary tumorigenesis; Skp2(-/-);Rb1(+/-) mice do not. Rb1(-/-) embryos die on embryonic day (E) 14.5-15.5. Here, we report that Skp2(-/-);Rb1(-/-) embryos died on E11.5, establishing an organismal level synthetic lethal relationship between Rb1 and Skp2 On E10.5, Rb1(-/-) placentas showed similarly active proliferation and similarly inactive apoptosis as WT placenta, whereas Rb1(-/-) embryos showed ectopic proliferation without increased apoptosis in the brain. Combining Skp2(-/-) did not reduce proliferation or increase apoptosis in the placentas but induced extensive apoptosis in the brain. We conditionally deleted Rb1 in neuronal lineage with Nes-Cre and reproduced the brain apoptosis in E13.5 Nes-Cre;Rb1(lox/lox);Skp2(-/-) embryos, demonstrating their synthetic lethal relationship at a cell autonomous level. Nes-Cre-mediated Rb1 deletion increased expression of proliferative E2F target genes in the brains of Skp2(+/+) embryos; the increases rose higher with activation of expression of apoptotic E2F target genes in Skp2(-/-) embryos. The brain apoptosis was independent of p53 but coincident with proliferation. The highly activated expression of proliferative and apoptotic E2F target genes subsided with gradually reduced roles of Skp2 in preventing p27 protein accumulation in the brain in late gestation, allowing the embryos to reach full term with normally sized brains. These findings establish that Rb1 and Skp2 deletions are synthetic lethal and suggest how this lethal relationship might be circumvented, which could help design better therapies for pRb-deficient cancer.

Related Organizations
Keywords

Male, Mice, Knockout, Brain, Embryonic Development, Apoptosis, Embryo, Mammalian, Retinoblastoma Protein, E2F Transcription Factors, Mice, Embryo Loss, Animals, Female, Tumor Suppressor Protein p53, S-Phase Kinase-Associated Proteins, Gene Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Average
gold