Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IMAGINE - Repository...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Biology Reports
Article . 2008 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 3 versions

ZBP-89 and Sp3 down-regulate while NF-Y up-regulates SOX18 promoter activity in HeLa cells

Authors: Petrović, Isidora; Kovačević Grujičić, Nataša; Stevanović, Milena;

ZBP-89 and Sp3 down-regulate while NF-Y up-regulates SOX18 promoter activity in HeLa cells

Abstract

The aim of this study has been to identify transcription factors involved in transcriptional regulation of the human SOX18 gene expression. Structural analysis revealed that the SOX18 promoter lacks a TATA box, but is CG-rich containing many putative binding sites for transcription factors that can bind and act through GC-boxes. Alignment analysis of promoter regions between human and mouse revealed conserved putative binding sites for transcription factors NF-Y and Sp-family members. Mithramycin A treatment led to increased SOX18 expression in vivo raising the possibility that the GC-rich sequence of the human SOX18 promoter might be occupied by transcription factor(s) that acts as repressor(s). Using in vitro binding assays we have demonstrated that transcription factors Sp3, ZBP-89 and NF-Y are capable of binding to the SOX18 promoter region spanning the sequence -200 to -162 relative to ATG and that formation of complexes could be efficiently reduced by mithramycin A. Furthermore, co-transfection experiments revealed that over-expression of Sp3 and ZBP-89 down-regulate, while over-expression of NF-Y up-regulates SOX18 promoter activity in HeLa cells. The involvement of these transcription factors in the regulation of SOX18 expression in HeLa cells was further confirmed in vivo by Western blot analyses. In this paper, for the first time, we have demonstrated that Sp3, ZBP-89 and NF-Y are involved in transcriptional regulation of the human SOX18 gene expression. Presented data provide the initial information about transcriptional regulation that will help in better understanding of molecular mechanisms involved in regulation of SOX18 gene expression.

Keywords

Molecular Sequence Data, Down-Regulation, Sp3, Sequence Homology, Nucleic Acid, SOXF Transcription Factors, Humans, Promoter Regions, Genetic, SOX18 gene, Base Sequence, Promoter, Computational Biology, Plicamycin, Up-Regulation, DNA-Binding Proteins, Sp3 Transcription Factor, CCAAT-Binding Factor, NF-Y, ZBP-89, Transcription, Sequence Alignment, HeLa Cells, Protein Binding, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Average