Neural Network Organization for Courtship Song Feature Detection inDrosophila
Neural Network Organization for Courtship Song Feature Detection inDrosophila
ABSTRACTAnimals communicate using sounds in a wide range of contexts, and auditory systems must encode behaviorally relevant acoustic features to drive appropriate reactions. How feature detection emerges along auditory pathways has been difficult to solve due to challenges in mapping the underlying circuits and characterizing responses to behaviorally relevant features. Here, we study auditory activity in theDrosophila melanogasterbrain and investigate feature selectivity for the two main modes of fly courtship song, sinusoids and pulse trains. We identify 24 new cell types of the intermediate layers of the auditory pathway, and using a new connectomic resource, FlyWire, we map all synaptic connections between these cell types, in addition to connections to known early and higher-order auditory neurons - this represents the first map of the auditory pathway. We additionally determine the sign (excitatory or inhibitory) of most synapses in this auditory connectome. We find that auditory neurons display a continuum of preferences for courtship song modes, and that neurons with different song mode preferences are highly interconnected in a network that lacks hierarchical structure. Among this network, frequency tuning is centered on the range of frequencies present in song, whereas pulse rate tuning extends to rates outside of song, suggesting that these neurons form a basis set for downstream processing. Our study provides new insights into the organization of auditory coding within theDrosophilabrain.
- College of New Jersey United States
- ETH Zurich Switzerland
- Princeton University United States
- PRINCETON UNIVERSITY
- Janelia Research Campus United States
neural network, acoustic communication, Courtship, auditory; neural network; acoustic communication; connectomics; calcium imaging; sensory responses, Sexual Behavior, Animal, calcium imaging, Drosophila melanogaster, Auditory Perception, Animals, Drosophila, sensory responses, Neural Networks, Computer, auditory, Vocalization, Animal, connectomics
neural network, acoustic communication, Courtship, auditory; neural network; acoustic communication; connectomics; calcium imaging; sensory responses, Sexual Behavior, Animal, calcium imaging, Drosophila melanogaster, Auditory Perception, Animals, Drosophila, sensory responses, Neural Networks, Computer, auditory, Vocalization, Animal, connectomics
15 Research products, page 1 of 2
- 2014IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).35 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
