The D2R-DISC1 protein complex and associated proteins are altered in schizophrenia and normalized with antipsychotic treatment
The D2R-DISC1 protein complex and associated proteins are altered in schizophrenia and normalized with antipsychotic treatment
Background For decades, the dopamine D2 receptor (D2R) has been known as the main target of antipsychotic medications, but the mechanism for antipsychotic effects beyond this pharmacological target remains unclear. Disrupted-in-schizophrenia 1 ( DISC1) is a gene implicated in the etiology of schizophrenia, and we have found elevated levels of the D2R-DISC1 complex in the postmortem brain tissue of patients with schizophrenia. Methods We used coimmunoprecipitation to measure D2R-DISC1 complex levels in peripheral blood samples from patients with schizophrenia and unaffected controls in 3 cohorts (including males and females) from different hospitals. We also used label-free mass spectrometry to conduct proteomic analysis of these samples. Results Levels of the D2R-DISC1 complex were elevated in the peripheral blood samples of patients with schizophrenia from 3 independent cohorts, and were normalized with antipsychotic treatment. Proteomic analysis of the blood samples from patients with high D2R-DISC1 complex levels that were normalized with antipsychotic treatment revealed a number of altered proteins and pathways associated with D2R, DISC1 and the D2R-DISC1 complex. We identified additional proteins and pathways that were associated with antipsychotic treatment in schizophrenia, and that may also be novel targets for schizophrenia treatment. Limitations Sample sizes were relatively small, but were sufficient to detect associations between D2R-DISC1 levels, schizophrenia and treatment response. The relevance of leukocyte changes to the symptoms of schizophrenia is unknown. The coimmunoprecipitation lanes included several nonspecific bands. Conclusion Levels of the D2R-DISC1 complex were elevated in patients with schizophrenia and reduced with antipsychotic treatment. This finding reinforces the independent role of each protein in schizophrenia. Our results enhanced our understanding of the molecular pathways involved in schizophrenia and in antipsychotic medications, and identified novel potential molecular targets for treating schizophrenia.
- University of Toronto Canada
- Banaras Hindu University India
- Centre for Addiction and Mental Health Canada
- Institute of Medical Sciences India
- Shanghai Mental Health Center China (People's Republic of)
Male, Proteomics, Receptors, Dopamine D2, Schizophrenia, Humans, Female, Nerve Tissue Proteins, Research Paper, Antipsychotic Agents
Male, Proteomics, Receptors, Dopamine D2, Schizophrenia, Humans, Female, Nerve Tissue Proteins, Research Paper, Antipsychotic Agents
9 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2014IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2019IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
