Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Vascular ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Vascular Surgery
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Vascular Surgery
Article . 2010
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Vascular Surgery
Article . 2010 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Vascular endothelial growth factor enhances angiotensin II-induced aneurysm formation in apolipoprotein E-deficient mice

Authors: Choke, E; Cockerill, GW; Dawson, J; Howe, F; Wilson, WR; Loftus, IM; Thompson, MM;

Vascular endothelial growth factor enhances angiotensin II-induced aneurysm formation in apolipoprotein E-deficient mice

Abstract

Abdominal aortic aneurysm (AAA) development is associated with increased angiogenesis and overexpression of vascular endothelial growth factor (VEGF). Inhibition of angiogenesis results in attenuation of experimental aneurysms. This study investigated the effects of recombinant human (rh)VEGF on experimental aneurysms.Apolipoprotein E-deficient (apoE(-/-)) mice were assigned to one of four groups: (1) normal saline infusion (sham), (2) angiotensin-II (AngII) infusion, (3) AngII infusion plus 100 microg daily rhVEGF for 14 days (AngII+14dVEGF), or (4) AngII infusion plus 100 microg daily rhVEGF for 21 days (AngII+21dVEGF). Aortic maximum diameter and cross-sectional area were determined by magnetic resonance imaging and microscopy. All mice were sacrificed at day 28.Aneurysms developed in all mice in the AngII+14dVEGF and AngII+21dVEGF groups by day 21 compared with 40% in the AngII group. Treatment with rhVEGF increased maximum aortic diameter (P < .002) and cross-sectional area of aneurysms (P < .005) at day 21. This effect was maintained at day 28 (P < .0005). Decreasing rhVEGF treatment from 21 to 14 days did not attenuate aneurysm formation. Treatment with rhVEGF upregulated matrix metalloproteinase 2 gene expression within the aortic wall (P < .0009).Treatment with rhVEGF intensified the formation of AngII-induced aneurysms. Further studies are needed to investigate if antiangiogenic therapy may be a valid medical therapy against aneurysm expansion or rupture.

Keywords

Enzymologic, Vascular Endothelial Growth Factor A, Male, Time Factors, Knockout, Gene Expression Regulation, Enzymologic, Injections, Mice, Apolipoproteins E, Animals, Humans, Abdominal, Intraperitoneal, Aorta, Abdominal, Aorta, Infusion Pumps, Pathologic, Mice, Knockout, Animal, Angiotensin II, Body Weight, Infusion Pumps, Implantable, Dilatation, Recombinant Proteins, Aortic Aneurysm, Disease Models, Animal, Gene Expression Regulation, Disease Models, Disease Progression, Matrix Metalloproteinase 2, Surgery, Implantable, Cardiology and Cardiovascular Medicine, Injections, Intraperitoneal, Magnetic Resonance Angiography, Aortic Aneurysm, Abdominal, Dilatation, Pathologic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%
hybrid