Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

An IL6-STAT3 loop mediates resistance to PI3K inhibitors by inducing epithelial–mesenchymal transition and cancer stem cell expansion in human breast cancer cells

Authors: Yong Sun; Siqi Han; Lin Yang;

An IL6-STAT3 loop mediates resistance to PI3K inhibitors by inducing epithelial–mesenchymal transition and cancer stem cell expansion in human breast cancer cells

Abstract

Recently, a new generation of PI3K-specific inhibitors, such as GDC0941 and BKM120, are being investigated in clinical trials for treatment against tumors harboring PIK3CA mutations. Nevertheless, not all patients benefit from such treatment, suggesting that their tumors may be resistant to PI3K inhibitors. The investigation of the underlying mechanisms and efficacious personalized treatment remain a large unmet need. In this study, we revealed an IL6-STAT3 positive feedback loop that mediated the resistance to PI3K inhibitors. We found that breast cancer cells with acquired resistance to PI3K inhibitors displayed epithelial-mesenchymal transition (EMT) features and an highly enriched cancer stem cells (CSCs), secreting ∼1000-fold more IL6 than parental cells. Further studies elucidated that activation of the IL6-STAT3 signaling effectively triggered EMT action, expanded the CSCs population, and reduced sensitivity to PI3K inhibitors. Pharmacological inhibition of STAT3 disrupted the IL6-STAT3 signaling and overcome resistance to PI3K inhibitors partially due to increased apoptosis induction. Taken together, our results demonstrated that feedback activation of the IL6-STAT3 loop lead to acquired resistance to PI3K inhibitors by promoting EMT and CSC-like features, and suggested that targeting this loop may be an efficient strategy to overcome resistance to PI3K inhibitors.

Related Organizations
Keywords

STAT3 Transcription Factor, Epithelial-Mesenchymal Transition, Interleukin-6, Breast Neoplasms, Enzyme-Linked Immunosorbent Assay, Real-Time Polymerase Chain Reaction, Cell Line, Tumor, Neoplastic Stem Cells, Humans, Female, Enzyme Inhibitors, Phosphoinositide-3 Kinase Inhibitors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Top 10%
Top 10%
Top 10%