Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article . 2008 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article
Data sources: UnpayWall
Genetics
Article . 2008
versions View all 2 versions

Drosophila LIM-Only Is a Positive Regulator of Transcription During Thoracic Bristle Development

Authors: Shamir, Zenvirt; Yael, Nevo-Caspi; Sigal, Rencus-Lazar; Daniel, Segal;

Drosophila LIM-Only Is a Positive Regulator of Transcription During Thoracic Bristle Development

Abstract

Abstract The Drosophila LIM-only (LMO) protein DLMO functions as a negative regulator of transcription during development of the fly wing. Here we report a novel role of DLMO as a positive regulator of transcription during the development of thoracic sensory bristles. We isolated new dlmo mutants, which lack some thoracic dorsocentral (DC) bristles. This phenotype is typical of malfunction of a thoracic multiprotein transcription complex, composed of CHIP, PANNIER (PNR), ACHAETE (AC), and DAUGHTERLESS (DA). Genetic interactions reveal that dlmo synergizes with pnr and ac to promote the development of thoracic DC bristles. Moreover, loss-of-function of dlmo reduces the expression of a reporter target gene of this complex in vivo. Using the GAL4-UAS system we also show that dlmo is spatially expressed where this complex is known to be active. Glutathione-S-transferase (GST)-pulldown assays showed that DLMO can physically bind CHIP and PNR through either of the two LIM domains of DLMO, suggesting that DLMO might function as part of this transcription complex in vivo. We propose that DLMO exerts its positive effect on DC bristle development by serving as a bridging molecule between components of the thoracic transcription complex.

Related Organizations
Keywords

Homeodomain Proteins, Transcription, Genetic, Gene Expression Regulation, Developmental, Nuclear Proteins, Thorax, Phenotype, Mutation, Basic Helix-Loop-Helix Transcription Factors, Animals, Drosophila Proteins, Drosophila, Body Patterning, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Average
hybrid