Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Leukemiaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Leukemia
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Leukemia
Article . 2003 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Leukemia
Article . 2003
Leukemia
Article . 2003
Data sources: Pure Amsterdam UMC
versions View all 3 versions

The hepatocyte growth factor/Met pathway controls proliferation and apoptosis in multiple myeloma

Authors: Derksen, P. W. B.; de Gorter, D. J. J.; Meijer, H. P.; Bende, R. J.; van Dijk, M.; Lokhorst, H. M.; Bloem, A. C.; +2 Authors

The hepatocyte growth factor/Met pathway controls proliferation and apoptosis in multiple myeloma

Abstract

The evolution of multiple myeloma (MM) depends on complex signals from the bone marrow (BM) microenvironment, supporting the proliferation and survival of malignant plasma cells. An interesting candidate signal is hepatocyte growth factor/scatter factor (HGF), since its receptor Met is expressed on MM cells, while HGF is produced by BM stromal cells and by some MM cell lines, enabling para- or autocrine interaction. To explore this hypothesis, we studied the biological effects of HGF stimulation on MM cell lines and on primary MMs. We observed that Met is expressed by the majority of MM cell lines and by approximately half of the primary plasma cell neoplasms tested. Stimulation of MM cells with HGF led to the activation of the RAS/mitogen-activated protein kinase and phosphatidylinositol 3-kinase/protein kinase B (PI3K/PKB) pathways, signaling routes that have been implicated in the regulation of cell proliferation and survival. Indeed, functional studies demonstrated that HGF has strong proliferative and anti-apoptotic effects on both MM cell lines and primary MM cells. Furthermore, by applying specific signal-transduction inhibitors, we demonstrated that MEK is required for HGF-induced proliferation, whereas activation of PI3K is required for both HGF-induced proliferation and for rescue of MM cells from apoptosis. Taken together, our data indicate that HGF is a potent myeloma growth and survival factor and suggest that the HGF/Met pathway is a potential therapeutic target in MM.

Keywords

Male, Mitogen-Activated Protein Kinase Kinases, Hepatocyte Growth Factor, MAP Kinase Signaling System, Plasma Cells, MAP Kinase Kinase 1, Apoptosis, Middle Aged, Protein Serine-Threonine Kinases, Proto-Oncogene Proteins c-met, Neoplasm Proteins, Phosphatidylinositol 3-Kinases, Humans, Female, Phosphorylation, Multiple Myeloma, Protein Processing, Post-Translational, Cell Division, Aged, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    144
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
144
Top 10%
Top 10%
Top 10%
bronze