Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Plant Journalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Plant Journal
Article . 2002 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Constitutive expression of ETHYLENE‐RESPONSE‐FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi

Authors: Marta, Berrocal-Lobo; Antonio, Molina; Roberto, Solano;

Constitutive expression of ETHYLENE‐RESPONSE‐FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi

Abstract

SummaryInfection of a plant by a pathogen induces a variety of defense responses that imply the action of several signaling molecules, including salicylic acid (SA), jasmonic acid (JA) and ethylene (E). Here we describe the role of ETHYLENE‐RESPONSE‐FACTOR1 (ERF1) as a regulator of ethylene responses after pathogen attack in Arabidopsis. The ERF1 transcript is induced on infection by Botrytis cinerea, and overexpression of ERF1 in Arabidopsis is sufficient to confer resistance to necrotrophic fungi such as B. cinerea and Plectosphaerella cucumerina. A positive co‐operation between E and SA pathways was observed in the plant response to P. cucumerina. Infection by Pseudomonas syringae tomato DC3000, however, does not affect ERF1 expression, and activation of ethylene responses by ERF1 overexpression in Arabidopsis plants reduces tolerance against this pathogen, suggesting negative crosstalk between E and SA signaling pathways, and demonstrating that positive and negative interactions between both pathways can be established depending on the type of pathogen.

Keywords

Arabidopsis Proteins, Arabidopsis, Nuclear Proteins, Cyclopentanes, Ethylenes, Immunity, Innate, DNA-Binding Proteins, Plant Growth Regulators, Gene Expression Regulation, Plant, Pseudomonas, Botrytis, Mitosporic Fungi, Oxylipins, Salicylic Acid, Plant Diseases, Plant Proteins, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    662
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
662
Top 0.1%
Top 1%
Top 1%