Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ RNAarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
RNA
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
MPG.PuRe
Article . 2005
Data sources: MPG.PuRe
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
RNA
Article . 2005 . Peer-reviewed
Data sources: Crossref
RNA
Article . 2005
RNA
Article . 2005
Data sources: u:cris
versions View all 6 versions

Unorthodox mRNA start site to extend the highly structured leader of retrotransposon Tto1 mRNA increases transposition rate

Authors: Bohmdorfer, G.; Hofacker, I.; Garber, K.; Jelenic, S.; Nizhynska, V.; Hirochika, H.; Stadler, P.; +1 Authors

Unorthodox mRNA start site to extend the highly structured leader of retrotransposon Tto1 mRNA increases transposition rate

Abstract

Retroelement RNAs serve as templates for both translation and reverse transcription into extrachromosomal DNA. DNA copies may be inserted into the host genome to multiply element sequences. This transpositional activity of retroelements is usually restricted to specific conditions, particularly to conditions that impose stress on the host organism. In this work, we examined how the mRNA initiation point, and features of primary and secondary structure, of tobacco retrotransposon Tto1 RNA influence its transpositional activity. We found that the most abundant Tto1 RNA is not a substrate for reverse transcription. It is poorly translated, and its 5′-end does not contain a region of redundancy with the most prominent 3′-end. In contrast, expression of an mRNA with the 5′-end extended by 28 nucleotides allows translation and gives rise to transposition events in the heterologous host, Arabidopsis thaliana. In addition, the presence of extended hairpins and of two short open reading frames in the 5′-leader sequence of Tto1 mRNA suggests that translation does not involve ribosome scanning from the mRNA 5′-end to the translation initiation site.

Keywords

Models, Molecular, DNA, Plant, Genotype, Retroelements, Genetic Vectors, Molecular Sequence Data, Restriction Mapping, Arabidopsis, Activation, Polymerase Chain Reaction, Open Reading Frames, Tissue-culture ; Plant retrotransposons ; Secondary structure ; Genome evolution ; Tobacco ; Arabidopsis ; Activation ; Promoter ; Element ; Ty1, Secondary structure, Tobacco, RNA, Messenger, 3' Untranslated Regions, Element, DNA Primers, 1040 Chemie, Base Sequence, Plant retrotransposons, Ty1, Promoter, Plants, Genetically Modified, Genome evolution, Plant Leaves, Tissue-culture, RNA, Plant, Nucleic Acid Conformation, 1040 Chemistry

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average
Green
bronze