Co-occurrence of both l-asparaginase subtypes in Arabidopsis: At3g16150 encodes a K+-dependent l-asparaginase
pmid: 16705405
Co-occurrence of both l-asparaginase subtypes in Arabidopsis: At3g16150 encodes a K+-dependent l-asparaginase
L-asparaginases (EC 3.5.1.1) are hypothesized to play an important role in nitrogen supply to sink tissues, especially in legume-developing seeds. Two plant L-asparaginase subtypes were previously identified according to their K(+)-dependence for catalytic activity. An L-asparaginase homologous to Lupinus K(+)-independent enzymes with activity towards beta-aspartyl dipeptides, At5g08100, has been previously characterized as a member of the N-terminal nucleophile amidohydrolase superfamily in Arabidopsis. In this study, a K(+)-dependent L-asparaginase from Arabidopsis, At3g16150, is characterized. The recombinants At3g16150 and At5g08100 share a similar subunit structure and conserved autoproteolytic pentapeptide cleavage site, commencing with the catalytic Thr nucleophile, as determined by ESI-MS. The catalytic activity of At3g16150 was enhanced approximately tenfold in the presence of K(+). At3g16150 was strictly specific for L-Asn, and had no activity towards beta-aspartyl dipeptides. At3g16150 also had an approximately 80-fold higher catalytic efficiency with L-Asn relative to At5g08100. Among the beta-aspartyl dipeptides tested, At5g08100 had a preference for beta-aspartyl-His, with catalytic efficiency comparable to that with L-Asn. The phylogenetic analysis revealed that At3g16150 and At5g08100 belong to two distinct subfamilies. The transcript levels of At3g16150 and At5g08100 were highest in sink tissues, especially in flowers and siliques, early in development, as determined by quantitative RT-PCR. The overlapping spatial patterns of expression argue for a partially redundant function of the enzymes. However, the high catalytic efficiency suggests that the K(+)-dependent enzyme may metabolize L-Asn more efficiently under conditions of high metabolic demand for N.
Arabidopsis Proteins, Molecular Sequence Data, Arabidopsis, Evolution, Molecular, Kinetics, Protein Subunits, Sequence Analysis, Protein, Multigene Family, Potassium, Asparaginase, Amino Acid Sequence, RNA, Messenger, Sequence Alignment, Phylogeny
Arabidopsis Proteins, Molecular Sequence Data, Arabidopsis, Evolution, Molecular, Kinetics, Protein Subunits, Sequence Analysis, Protein, Multigene Family, Potassium, Asparaginase, Amino Acid Sequence, RNA, Messenger, Sequence Alignment, Phylogeny
13 Research products, page 1 of 2
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).75 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
