Variationally Inferred Sampling Through a Refined Bound for Probabilistic Programs
arXiv: 1908.09744
Variationally Inferred Sampling Through a Refined Bound for Probabilistic Programs
A framework to boost the efficiency of Bayesian inference in probabilistic programs is introduced by embedding a sampler inside a variational posterior approximation. We call it the refined variational approximation. Its strength lies both in ease of implementation and automatically tuning of the sampler parameters to speed up mixing time using automatic differentiation. Several strategies to approximate \emph{evidence lower bound} (ELBO) computation are introduced. Experimental evidence of its efficient performance is shown solving an influence diagram in a high-dimensional space using a conditional variational autoencoder (cVAE) as a deep Bayes classifier; an unconditional VAE on density estimation tasks; and state-space models for time-series data.
- Institute of Mathematical Sciences Spain
- Duke University United States
FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, Machine Learning (stat.ML), Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, Machine Learning (stat.ML), Machine Learning (cs.LG)
2 Research products, page 1 of 1
- IsRelatedTo
- IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
