Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1994 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Type I procollagen COOH-terminal proteinase enhancer protein: identification, primary structure, and chromosomal localization of the cognate human gene (PCOLCE)

Authors: M Brusel; Kazuhiko Takahara; T B Shows; L Biniaminov; E. Kessler; Daniel S. Greenspan; R L Eddy; +1 Authors

Type I procollagen COOH-terminal proteinase enhancer protein: identification, primary structure, and chromosomal localization of the cognate human gene (PCOLCE)

Abstract

Type I procollagen COOH-terminal proteinase (C-proteinase) enhancer, a glycoprotein that binds to the COOH-terminal propeptide of type I procollagen and enhances procollagen C-proteinase activity, was purified from mouse fibroblast culture media. Partial amino acid sequences obtained from proteolytic fragments were found to have identity with the deduced amino acid sequence of a cDNA clone of unknown function, previously isolated from a mouse astrocyte library. Sequences of mouse enhancer cDNA, obtained in the present study, predict a approximately 50-kDa, 468-amino acid protein that differs from the 43-kDa, 402-amino acid protein predicted by the previously reported astrocyte-derived clone. Human cDNAs encode an enhancer of 449 amino acids. Previous biochemical studies have found the mouse enhancer as a 55-kDa form, which is readily processed to 36- and 34-kDa forms, retaining full C-proteinase enhancing activity and the ability to bind the COOH-terminal propeptide. Data presented here show the 36-kDa form to correspond to the amino-terminal portion of the 55-kDa protein. This is the most conserved region between mouse and human enhancers, comprising two domains with homology to domains found in a number of proteases and proteins with developmental functions. Such domains are thought to mediate interactions between proteins. Mouse enhancer RNA is shown to be at highest levels in collagen-rich tissues, especially tendon. The human enhancer gene, PCOLCE, is localized to 7q21.3-->q22, the same chromosomal region containing the type I collagen alpha 2 chain gene, COL1A2.

Keywords

DNA, Complementary, Sequence Homology, Amino Acid, Molecular Sequence Data, Chromosome Mapping, Metalloendopeptidases, Bone Morphogenetic Protein 1, Mice, Enhancer Elements, Genetic, Bone Morphogenetic Proteins, Endopeptidases, Animals, Humans, RNA, Amino Acid Sequence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    98
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
98
Top 10%
Top 10%
Top 10%
gold