Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1997 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

A Cryptic DNA Binding Domain at the COOH Terminus of TFIIIB70 Affects Formation, Stability, and Function of Preinitiation Complexes

Authors: J, Huet; C, Conesa; C, Carles; A, Sentenac;

A Cryptic DNA Binding Domain at the COOH Terminus of TFIIIB70 Affects Formation, Stability, and Function of Preinitiation Complexes

Abstract

TFIIIC-dependent assembly of yeast TFIIIB on class III genes unmasks a high avidity of TFIIIB for DNA. TFIIIB contains TATA-binding protein (TBP), TFIIIB90/B", and TFIIIB70/Brf1, which is homologous to TFIIB. Using limited proteolysis, we have found that the COOH terminus of TFIIIB70 (residues 510-596) forms a protease-resistant domain that binds DNA tightly as seen by Southwestern, DNase I footprinting, and gel shift assays. Consistent with a role for this DNA binding activity, preinitiation complexes were formed less efficiently with truncated TFIIIB70 lacking the COOH-terminal domain and displayed an increased sensitivity to heparin. B' (TFIIIB70 + TBP).TFIIIC.DNA complexes were also particularly unstable. In addition, TFIIIB.TFIIIC.DNA complexes containing truncated TFIIIB70 were impaired in promoting transcription initiation.

Keywords

TATA-Binding Protein Associated Factors, Binding Sites, Heparin, Molecular Sequence Data, DNA, Saccharomyces cerevisiae, TATA-Box Binding Protein, TATA Box, Peptide Fragments, Recombinant Proteins, DNA-Binding Proteins, Transcription Factor TFIIIB, Mutagenesis, Site-Directed, Animals, Humans, Amino Acid Sequence, Caenorhabditis elegans, Sequence Alignment, Conserved Sequence, Sequence Tagged Sites

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Average
Top 10%
Top 10%
gold