Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2001 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

HMGN3a and HMGN3b, Two Protein Isoforms with a Tissue-specific Expression Pattern, Expand the Cellular Repertoire of Nucleosome-binding Proteins

Authors: Michael Bustin; Yuko Ito; Katherine L. West; Hitoshi Shirakawa; Yehudit Birger; Yuri V. Postnikov;

HMGN3a and HMGN3b, Two Protein Isoforms with a Tissue-specific Expression Pattern, Expand the Cellular Repertoire of Nucleosome-binding Proteins

Abstract

HMGN1 (HMG-14) and HMGN2 (HMG-17) are nuclear proteins that bind specifically to nucleosomes, reduce the compactness of the chromatin fiber, and enhance transcription from chromatin templates. Here we report that many vertebrates contain an additional type of HMGN protein named HMGN3 (Trip 7). The human HMGN3 gene is located on chromosome 6 and spans 32 kilobase pairs, which is nearly 10-fold longer than the closely related HMGN2 gene. However, the intron/exon boundaries of the HMGN3 gene are identical to those of HMGN1 and HMGN2. Unique within the HMGN family, the HMGN3 transcript undergoes alternative splicing and generates two different variants, HMGN3a and HMGN3b. The shorter variant, HMGN3b, arises from an additional splice site that truncates exon V and causes a frameshift. The resulting HMGN3b protein lacks the majority of the C-terminal chromatin-unfolding domain. Both splice variants are found in many vertebrates from frogs to man and are expressed in many tissues. The pattern of tissue-specific expression differs considerably from those of HMGN1 and HMGN2 at both the mRNA and the protein level. Our results expand the multiplicity of the HMGN protein family and raise the possibility that these nucleosome-binding proteins function as co-activators in tissue-specific gene expression.

Related Organizations
Keywords

Menotropins, Base Sequence, Genome, Human, Molecular Sequence Data, High Mobility Group Proteins, Nucleosomes, Organ Specificity, Humans, Protein Isoforms, Chromosomes, Human, Pair 6, Amino Acid Sequence, Sequence Alignment, Sequence Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Top 10%
Top 10%
Top 10%
gold