Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Brain Structure and ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Brain Structure and Function
Article . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 3 versions

Bradykinin B2 receptor is essential to running-induced cell proliferation in the adult mouse hippocampus

Authors: Frederick Wasinski; Rogerio Oliveira Batista; Michael Bader; Ronaldo C. Araujo; Friederike Klempin;

Bradykinin B2 receptor is essential to running-induced cell proliferation in the adult mouse hippocampus

Abstract

Physical exercise is a strong external effector that induces precursor cell proliferation in the adult mouse hippocampus. Research into mechanisms has focused on central changes within the hippocampus and we have established that serotonin is the signaling factor that transduces physical activity into adult neurogenesis. Less focus has been given on potential peripheral signals that may cause pro-mitotic running effects. Vasoactive kinin peptides are important for blood pressure regulation and inflammatory processes to maintain cardiovascular homeostasis. Acting via the two receptors termed B1 (B1R) and B2R, the peptides also function in the brain. In particular, studies attribute B2R a role in cell proliferation and differentiation into neurons in vitro. Here, we determined B1R and B2R mRNA expression levels in the adult mouse hippocampus and prefrontal cortex in vivo, and in response to running exercise. Using mice depleted in either or both receptors, B1-knockout (KO), B2KO and B1/2KO we observed changes in running performance overnight and in running distances. However, voluntary exercise led to the known pro-mitotic effect in the dentate gyrus of B1KO mice while it was attenuated in B2KO accompanied by an increase in microglia cells. Our data identify B2R as an important factor in running-induced precursor cell proliferation.

Keywords

Mice, Knockout, Receptor, Bradykinin B2, Prefrontal Cortex, Receptor, Bradykinin B1, Running, Mice, Inbred C57BL, Mice, Phenotype, Cardiovascular and Metabolic Diseases, Dentate Gyrus, Animals, Female, Microglia, RNA, Messenger, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Green
bronze