Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The EMBO Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The EMBO Journal
Article . 2012 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The EMBO Journal
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The EMBO Journal
Article . 2012
versions View all 3 versions

Cytoplasmic Arabidopsis AGO7 accumulates in membrane‐associated siRNA bodies and is required for ta‐siRNA biogenesis

Authors: Virginie, Jouannet; Ana Beatriz, Moreno; Taline, Elmayan; Hervé, Vaucheret; Martin D, Crespi; Alexis, Maizel;

Cytoplasmic Arabidopsis AGO7 accumulates in membrane‐associated siRNA bodies and is required for ta‐siRNA biogenesis

Abstract

Formation of trans-acting small interfering RNAs (ta-siRNAs) from the TAS3 precursor is triggered by the AGO7/miR390 complex, which primes TAS3 for conversion into double-stranded RNA by the RNA-dependent RNA polymerase RDR6 and SGS3. These ta-siRNAs control several aspects of plant development. The mechanism routing AGO7-cleaved TAS3 precursor to RDR6/SGS3 and its subcellular organization are unknown. We show that AGO7 accumulates together with SGS3 and RDR6 in cytoplasmic siRNA bodies that are distinct from P-bodies. siRNA bodies colocalize with a membrane-associated viral protein and become positive for stress-granule markers upon stress-induced translational repression, this suggests that siRNA bodies are membrane-associated sites of accumulation of mRNA stalled during translation. AGO7 congregates with miR390 and SGS3 in membranes and its targeting to the nucleus prevents its accumulation in siRNA bodies and ta-siRNA formation. AGO7 is therefore required in the cytoplasm and membranous siRNA bodies for TAS3 processing, revealing a hitherto unknown role for membrane-associated ribonucleoparticles in ta-siRNA biogenesis and AGO action in plants.

Keywords

Inclusion Bodies, Cytosol, Arabidopsis Proteins, Cell Membrane, Arabidopsis, RNA, Small Interfering, RNA, Double-Stranded

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    130
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
130
Top 1%
Top 10%
Top 1%
bronze