SPA1 and DET1 act together to control photomorphogenesis throughout plant development
pmid: 20041285
SPA1 and DET1 act together to control photomorphogenesis throughout plant development
The COP1/SPA complex and DET1 function to suppress photomorphogenesis in dark-grown Arabidopsis seedlings. Additionally, they inhibit flowering under non-inductive short-day conditions. The COP1/SPA complex and DET1, as part of the CDD complex, represent distinct high-molecular-weight complexes in Arabidopsis. Here, we provide genetic evidence that these complexes co-act in regulating plant development. We report the isolation of a spa1 enhancer mutation that represents a novel, very weak allele of det1. This det1 ( esp1 ) mutation caused no detectable mutant phenotype in the presence of wild-type SPA1, but showed strongly synergistic genetic interaction with the spa1 mutation in the control of seedling photomorphogenesis, anthocyanin accumulation, plant size as well as flowering time. On the biochemical level, the det1 ( esp1 ) spa1 double mutant showed higher HY5 protein levels than either single mutant or the wild type. The genetic interaction of spa1 and det1 mutations was further confirmed in the spa1 det1-1 double mutant which carries a strong allele of det1. Taken together, these results show that SPA1 and DET1 act together to control photomorphogenesis throughout plant development. Hence, this suggests that COP1/SPA complexes and the CDD complex co-act in controlling the protein stability of COP1/SPA target proteins.
- University of Cologne Germany
Light, Arabidopsis Proteins, Arabidopsis, Intracellular Signaling Peptides and Proteins, Nuclear Proteins, Cell Cycle Proteins, Plants, Genetically Modified, Polymerase Chain Reaction, Basic-Leucine Zipper Transcription Factors, Gene Expression Regulation, Plant, Seedlings
Light, Arabidopsis Proteins, Arabidopsis, Intracellular Signaling Peptides and Proteins, Nuclear Proteins, Cell Cycle Proteins, Plants, Genetically Modified, Polymerase Chain Reaction, Basic-Leucine Zipper Transcription Factors, Gene Expression Regulation, Plant, Seedlings
6 Research products, page 1 of 1
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).27 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
