Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mechanisms of Develo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article . 2013
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mechanisms of Development
Article . 2013 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions

Egfr signaling controls the size of the stem cell precursor pool in the Drosophila ovary

Authors: Matsuoka, Shinya; Hiromi, Yasushi; Asaoka, Miho;

Egfr signaling controls the size of the stem cell precursor pool in the Drosophila ovary

Abstract

In many animals, germline progenitors are kept undifferentiated to give rise to germline stem cells (GSCs), enabling continuous production of gametes throughout animal life. In the Drosophila ovary, GSCs arise from a subset of primordial germ cells (PGCs) that stay undifferentiated even after gametogenesis has started. How a certain population of PGCs is protected against differentiation, and the significance of its regulatory mechanisms on GSC establishment remain elusive. Here we show that epidermal growth factor receptor (Egfr) signaling in somatic stromal intermingled cells (ICs), activated by its ligand produced in germ cells, controls the size of the PGC pool at the onset of gametogenesis. Egfr signaling in ICs limits the number of cells that express the heparan sulfate proteoglycan Dally, which is required for the movement and stability of the locally-produced stromal morphogen, Decapentaplegic (Dpp, a BMP2/4 homologue). Dpp is received by PGCs and maintains them in an undifferentiated state. Altering Egfr signaling levels changes the size of the PGC pool and affects the number of GSCs established during development. While excess GSC formation is compensated by the adult stage, insufficient GSC formation can lead to adult ovarioles that completely lack GSCs, suggesting that ensuring an absolute size of the PGC pool is crucial for the GSC system.

Keywords

Embryology, Membrane Glycoproteins, Stem Cells, Ovary, Cell Count, Ligands, Models, Biological, ErbB Receptors, Drosophila melanogaster, Germ Cells, Animals, Drosophila Proteins, Female, Proteoglycans, Receptors, Invertebrate Peptide, Developmental Biology, Cell Size, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%
hybrid