Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Arthritis & Rheumati...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Arthritis & Rheumatism
Article . 2010 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Juvenile idiopathic arthritis and HLA Class I and Class II interactions and age‐at‐onset effects

Authors: Jill A, Hollenbach; Susan D, Thompson; Teodorica L, Bugawan; Mary, Ryan; Marc, Sudman; Miranda, Marion; Carl D, Langefeld; +3 Authors

Juvenile idiopathic arthritis and HLA Class I and Class II interactions and age‐at‐onset effects

Abstract

AbstractObjectiveThe aim of this study was to quantitate risk and to examine heterogeneity for HLA at high resolution in patients with the most common subtypes of juvenile idiopathic arthritis (JIA), IgM rheumatoid factor–negative polyarticular JIA and oligoarticular JIA. Use of 4‐digit comprehensive HLA typing enabled great precision, and a large cohort allowed for consideration of both age at disease onset and disease subtype.MethodsPolymerase chain reaction–based high‐resolution HLA typing for class I and class II loci was accomplished for 820 patients with JIA and 273 control subjects. Specific HLA epitopes, potential interactions of alleles at specific loci and between loci (accounting for linkage disequilibrium and haplotypic associations), and an assessment of the current International League of Associations for Rheumatology classification criteria were considered.ResultsAn HLA–DRB1/DQB1 effect was shown to be exclusively attributable to DRB1 and was similar between patients with oligoarticular JIA and a younger subgroup of patients with polyarticular JIA. Furthermore, patients with polyarticular JIA showed age‐specific related effects, with disease susceptibility in the group older than age 6 years limited to an effect of the HLA–DRB1*08 haplotype, which is markedly different from the additional susceptibility haplotypes, HLA–DRB1*1103/1104, found in the group with oligoarticular JIA and the group of younger patients with polyarticular JIA. Also in contrast to findings for oligoarticular JIA, patients with polyarticular arthritis had no evidence of an HLA class I effect. Markers associated with a reduced risk of disease included DRB1*1501, DRB1*0401, and DRB1*0701. DRB1*1501 was shown to reduce risk across the whole cohort, whereas DRB1*0401 and DRB1*0701 were protective for selected JIA subtypes. Surprisingly, the disease predisposition mediated by DPB1*0201 in individuals without any disease‐predisposing DRB1 alleles was great enough to overcome even the very strong protective effect observed for DRB1*1501.ConclusionInherited HLA factors in JIA show similarities overall as well as differences between JIA subtypes.

Keywords

Male, Principal Component Analysis, Adolescent, Patient Selection, Histocompatibility Antigens Class I, Age Factors, Histocompatibility Antigens Class II, Polymerase Chain Reaction, Arthritis, Juvenile, Gene Frequency, Haplotypes, Case-Control Studies, Child, Preschool, Odds Ratio, Humans, Female, Genetic Predisposition to Disease, Age of Onset, Child, Alleles

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    111
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
111
Top 10%
Top 10%
Top 10%
bronze