Mobilization of pro-inflammatory lipids in obese Plscr3-deficient mice
Mobilization of pro-inflammatory lipids in obese Plscr3-deficient mice
Abstract Background The obesity epidemic has prompted the search for candidate genes capable of influencing adipose function. One such candidate, that encoding phospholipid scramblase 3 (PLSCR3), was recently identified, as genetic deletion of it led to lipid accumulation in abdominal fat pads and changes characteristic of metabolic syndrome. Because adipose tissue is increasingly recognized as an endocrine organ, capable of releasing small molecules that modulate disparate physiological processes, we examined the plasma from wild-type, Plscr1-/-, Plscr3-/- and Plscr1&3-/- mice. Using an untargeted comprehensive metabolite profiling approach coupled with targeted gene expression analyses, the perturbed biochemistry and functional redundancy of PLSCR proteins was assessed. Results Nineteen metabolites were differentially and similarly regulated in both Plscr3-/- and Plscr1&3-/- animals, of which five were characterized from accurate mass, tandem mass spectrometry data and their correlation to the Metlin database as lysophosphatidylcholine (LPC) species enriched with C16:1, C18:1, C20:3, C20:5 and C22:5 fatty acids. No significant changes in the plasma metabolome were detected upon elimination of PLSCR1, indicating that increases in pro-inflammatory lipids are specifically associated with the obese state of Plscr3-deficient animals. Correspondingly, increases in white adipose lipogenic gene expression confirm a role for PLSCR3 in adipose lipid metabolism. Conclusion The untargeted profiling of circulating metabolites suggests no detectable functional redundancies between PLSCR proteins; however, this approach simultaneously identified previously unrecognized lipid metabolites that suggest a novel molecular link between obesity, inflammation and the downstream consequences associated with PLSCR3-deficiency.
- UNIVERSITY OF ROCHESTER
- Paris 13 University France
- Scripps Research Institute United States
- University of Rochester Medical Center United States
Inflammation, Mice, Knockout, Research, Adipose Tissue, White, Gene Expression Profiling, Fatty Acids, Lysophosphatidylcholines, Lipid Metabolism, Mice, Tandem Mass Spectrometry, Animals, Obesity, Phospholipid Transfer Proteins
Inflammation, Mice, Knockout, Research, Adipose Tissue, White, Gene Expression Profiling, Fatty Acids, Lysophosphatidylcholines, Lipid Metabolism, Mice, Tandem Mass Spectrometry, Animals, Obesity, Phospholipid Transfer Proteins
17 Research products, page 1 of 2
- 2011IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2004IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2012IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).17 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
