Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Heart Failure Review...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Heart Failure Reviews
Article . 2005 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Improvement of Cardiac Sarcoplasmic Reticulum Calcium Cycling in Dogs with Heart Failure Following Long-Term Therapy with the Acorn Cardiac Support Device

Authors: Ramesh C. Gupta; Sharad Rastogi; Sudhish Mishra; Victor G. Sharov; Hani N. Sabbah;

Improvement of Cardiac Sarcoplasmic Reticulum Calcium Cycling in Dogs with Heart Failure Following Long-Term Therapy with the Acorn Cardiac Support Device

Abstract

Abnormal Ca(2+)-homeostasis is a hall-marked characteristic of the failing heart. In the normal myocardium, the sarcoplasmic reticulum (SR) is a principal organelle that controls intracellular Ca(2+) concentration during the cardiac cycle. The SR consists of longitudinal and terminal cisternea regions. The former contains the Ca(2+)-ATPase pump or SERCA-2a whose function is to transport cytosolic Ca(2+) into the lumen of the SR during diastole and whose activity is regulated by reversible phosphorylation of the endogenously SR-bound phospholamban (PLB). The SR's terminal cisternea region contains ryanodine-sensitive Ca(2+)-release channels (RR), the activity of which is regulated by direct and indirect reversible phosphorylation. These channels release the SR-stored Ca(2+) during contraction. We have shown that in left ventricular (LV) myocardium from dogs with coronary microembolization-induced heart failure, ability of the SR to sequester and release Ca(2+) during the cardiac cycles is impaired. This abnormality was associated with reduced expression (protein and mRNA) levels of Ca(2+)-ATPase, PLB, and reduced PLB phosphorylation. Long-term therapy with the Acorn Cardiac Support Device (CSD) is associated with restoration of the ability of the SR to sequester Ca(2+). This improvement in SR function following chronic CSD therapy was due primarily to increased affinity of the SERCA-2a for calcium. The later was associated with (1) increased phosphorylation of PLB at serine 16 and threonine 17, (2) unchanged protein expression of PLB and (3) unchanged protein expression of SERCA-2a in LV myocardium of CSD-treated dogs compared to controls. This review summarizes our current understanding of the role of the CSD in modulating SR calcium cycling in an experimental canine model of chronic heart failure produced by multiple sequential intracoronary microembolizations.

Related Organizations
Keywords

Heart Failure, Ventricular Remodeling, Mechanotransduction, Cellular, Disease Models, Animal, Sarcoplasmic Reticulum, Dogs, Animals, Humans, Calcium Signaling, Heart-Assist Devices

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average