Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1995 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

The Yeast Mitochondrial Protein Import Receptor Mas20p Binds Precursor Proteins through Electrostatic Interaction with the Positively Charged Presequence

Authors: V, Haucke; T, Lithgow; S, Rospert; K, Hahne; G, Schatz;

The Yeast Mitochondrial Protein Import Receptor Mas20p Binds Precursor Proteins through Electrostatic Interaction with the Positively Charged Presequence

Abstract

Protein import into yeast mitochondria is mediated by the four outer membrane receptors Mas70p, Mas37p, Mas20p, and Mas22p. These receptors may function as two subcomplexes: a Mas37p/Mas70p heterodimer and an acidic complex consisting of Mas20p and Mas22p. To assess the relative contribution of these subcomplexes to precursor binding, we allowed different precursors to bind to the surface of deenergized mitochondria, then reenergized the mitochondria and measured the chase of the bound precursors into the organelles. Productive binding of several precursors with a positively charged amino-terminal matrix targeting sequence, such as SU9-DHFR, hsp60, and mitochondrial cpn10, was strongly inhibited by salt, by low concentrations of a mitochondrial presequence peptide, and by a deletion of Mas20p, but was independent of Mas37p/Mas70p. In contrast, productive binding of the ADP/ATP carrier was not inhibited by salt, the presequence peptide, or a deletion of Mas20p, but was strongly dependent on Mas37p/Mas70p. The precursors of alcohol dehydrogenase III and the Rieske iron-sulfur protein had binding properties between these two extremes. The productively bound precursor of cpn10 could be cross-linked to Mas20p. We conclude that Mas20p binds mitochondrial precursor proteins through electrostatic interactions with the positively charged presequence, whereas Mas37p/Mas70p may recognize some feature(s) of the mature part of precursor proteins.

Related Organizations
Keywords

Organelles, Neurospora crassa, Macromolecular Substances, Molecular Sequence Data, Membrane Proteins, Membrane Transport Proteins, Chaperonin 60, Mitochondrial Membrane Transport Proteins, Protein Structure, Secondary, Mitochondria, Kinetics, Mice, Mitochondrial Precursor Protein Import Complex Proteins, Electrochemistry, Animals, Histidine, Amino Acid Sequence, Protein Precursors, Mitochondrial ADP, ATP Translocases, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    102
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
102
Top 10%
Top 10%
Top 1%
gold