The ensemble folding kinetics of the FBP28 WW domain revealed by an all‐atom Monte Carlo simulation in a knowledge‐based potential
The ensemble folding kinetics of the FBP28 WW domain revealed by an all‐atom Monte Carlo simulation in a knowledge‐based potential
AbstractIn this work, we apply a detailed all‐atom model with a transferable knowledge‐based potential to study the folding kinetics of Formin‐Binding protein, FBP28, which is a canonical three‐stranded β‐sheet WW domain. Replica exchange Monte Carlo simulations starting from random coils find native‐like (Cα RMSD of 2.68 Å) lowest energy structure. We also study the folding kinetics of FBP28 WW domain by performing a large number of ab initio Monte Carlo folding simulations. Using these trajectories, we examine the order of formation of two β‐hairpins, the folding mechanism of each individual β‐hairpin, and transition state ensemble (TSE) of FBP28 WW domain and compare our results with experimental data and previous computational studies. To obtain detailed structural information on the folding dynamics viewed as an ensemble process, we perform a clustering analysis procedure based on graph theory. Further, a rigorous Pfold analysis is used to obtain representative samples of the TSEs showing good quantitative agreement between experimental and simulated Φ values. Our analysis shows that the turn structure between first and second β strands is a partially stable structural motif that gets formed before entering the TSE in FBP28 WW domain and there exist two major pathways for the folding of FBP28 WW domain, which differ in the order and mechanism of hairpin formation. Proteins 2011. © 2011 Wiley‐Liss, Inc.
- Harvard University United States
Models, Molecular, Protein Folding, 540, transition state ensemble, 530, Protein Structure, Secondary, Protein Structure, Tertiary, Kinetics, Mice, Pfold analysis, β-sheet, protein folding, Animals, Computer Simulation, β-hairpin, Transcriptional Elongation Factors, β-strand, Φ-value analysis, Monte Carlo Method
Models, Molecular, Protein Folding, 540, transition state ensemble, 530, Protein Structure, Secondary, Protein Structure, Tertiary, Kinetics, Mice, Pfold analysis, β-sheet, protein folding, Animals, Computer Simulation, β-hairpin, Transcriptional Elongation Factors, β-strand, Φ-value analysis, Monte Carlo Method
15 Research products, page 1 of 2
- 2010IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2011IsAmongTopNSimilarDocuments
- 2006IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2013IsAmongTopNSimilarDocuments
- 2013IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2006IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).16 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
