TNF-α-induced Regulation and Signalling in Macrophages
pmid: 8933152
TNF-α-induced Regulation and Signalling in Macrophages
Tumor necrosis factor alpha (TNF-alpha) is a pleiotropic cytokine produced predominantly by macrophages. In addition, macrophages respond to TNF-alpha by differentiating to express different groups of gene products. Our laboratory recently showed that the context in which TNF-alpha is recognized by macrophages dramatically impacts the pattern of gene expression and hence investigating the mechanism of TNF-alpha signal transduction will be important in understanding how this molecule regulates macrophage differentiation. TNF-alpha is recognized by two cell surface receptors, CD120a (p55) and CD120b (p75) that belong to the TNF/NGF receptor family. Signalling is initiated by receptor multimerization in the plane of the plasma membrane. The initial signalling events activated by receptor cross-linking are unknown although activation of the mitogen-activated protein kinase (MAPK) cascade occurs shortly after ligand binding to CD120a (p55). We have investigated the upstream kinases that mediate the activation of p42mapk/erk2 following cross-linking of CD120a (p55) in mouse macrophages. Exposure of mouse macrophages to TNF-alpha stimulated a time-dependent increase in the activity of MEK1, that temporally preceded peak activation of p42mapk/erk2. MEKs, dual specificity T/Y kinases, act as a convergence point for several signalling pathways including Ras/Raf, MEKK and Mos. Incubation of macrophages with TNF-alpha was found to transiently stimulate an MEKK that peaked in activity within 30 sec of exposure and progressively declined towards basal levels by 5 min. By contrast, under these conditions, activation of either c-Raf-1 or Raf-B was not detected. These data suggest that the activation of the MAPK cascade in response to TNF-alpha is mediated by the sequential activation of an MEKK and MEK1 in a c-Raf-1 and Raf-B-independent fashion. The implications of these findings will be discussed in the context of the regulation of macrophage gene expression.
- University of Colorado Cancer Center United States
- University of Colorado Anschutz Medical Campus United States
Tumor Necrosis Factor-alpha, Macrophages, Animals, Humans, Signal Transduction
Tumor Necrosis Factor-alpha, Macrophages, Animals, Humans, Signal Transduction
5 Research products, page 1 of 1
- 1995IsAmongTopNSimilarDocuments
- 2004IsAmongTopNSimilarDocuments
- 1995IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).75 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
