<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>HDAC2 negatively regulates memory formation and synaptic plasticity
HDAC2 negatively regulates memory formation and synaptic plasticity
Chromatin modifications, especially histone-tail acetylation, have been implicated in memory formation. Increased histone-tail acetylation induced by inhibitors of histone deacetylases (HDACis) facilitates learning and memory in wild-type mice as well as in mouse models of neurodegeneration. Harnessing the therapeutic potential of HDACis requires knowledge of the specific HDAC family member(s) linked to cognitive enhancement. Here we show that neuron-specific overexpression of HDAC2, but not that of HDAC1, decreased dendritic spine density, synapse number, synaptic plasticity and memory formation. Conversely, Hdac2 deficiency resulted in increased synapse number and memory facilitation, similar to chronic treatment with HDACis in mice. Notably, reduced synapse number and learning impairment of HDAC2-overexpressing mice were ameliorated by chronic treatment with HDACis. Correspondingly, treatment with HDACis failed to further facilitate memory formation in Hdac2-deficient mice. Furthermore, analysis of promoter occupancy revealed an association of HDAC2 with the promoters of genes implicated in synaptic plasticity and memory formation. Taken together, our results suggest that HDAC2 functions in modulating synaptic plasticity and long-lasting changes of neural circuits, which in turn negatively regulates learning and memory. These observations encourage the development and testing of HDAC2-selective inhibitors for human diseases associated with memory impairment.
- Harvard University United States
- Massachusetts Institute of Technology United States
- Dana-Farber Cancer Institute United States
- Department of Biological Engineering Massachusetts Institute of Technology United States
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School United States
Male, Mice, Knockout, Neurons, Dendritic Spines, 610, Histone Deacetylase 2, Histone Deacetylase 1, Hydroxamic Acids, Hippocampus, Article, Histone Deacetylases, Histone Deacetylase Inhibitors, Mice, Inbred C57BL, Butyrates, Mice, Electrical Synapses, Gene Expression Regulation, Memory, Animals, Learning, Female, Promoter Regions, Genetic
Male, Mice, Knockout, Neurons, Dendritic Spines, 610, Histone Deacetylase 2, Histone Deacetylase 1, Hydroxamic Acids, Hippocampus, Article, Histone Deacetylases, Histone Deacetylase Inhibitors, Mice, Inbred C57BL, Butyrates, Mice, Electrical Synapses, Gene Expression Regulation, Memory, Animals, Learning, Female, Promoter Regions, Genetic
18 Research products, page 1 of 2
- 2001IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1K popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
