Ablation of Vacuole Protein Sorting 18 (Vps18) Gene Leads to Neurodegeneration and Impaired Neuronal Migration by Disrupting Multiple Vesicle Transport Pathways to Lysosomes
Ablation of Vacuole Protein Sorting 18 (Vps18) Gene Leads to Neurodegeneration and Impaired Neuronal Migration by Disrupting Multiple Vesicle Transport Pathways to Lysosomes
Intracellular vesicle transport pathways are critical for neuronal survival and central nervous system development. The Vps-C complex regulates multiple vesicle transport pathways to the lysosome in lower organisms. However, little is known regarding its physiological function in mammals. We deleted Vps18, a central member of Vps-C core complex, in neural cells by generating Vps18(F/F); Nestin-Cre mice (Vps18 conditional knock-out mice). These mice displayed severe neurodegeneration and neuronal migration defects. Mechanistic studies revealed that Vps18 deficiency caused neurodegeneration by blocking multiple vesicle transport pathways to the lysosome, including autophagy, endocytosis, and biosynthetic pathways. Our study also showed that ablation of Vps18 resulted in up-regulation of β1 integrin in mouse brain probably due to lysosome dysfunction but had no effects on the reelin pathway, expression of N-cadherin, or activation of JNK, which are implicated in the regulation of neuronal migration. Finally, we demonstrated that knocking down β1 integrin partially rescued the migration defects, suggesting that Vps18 deficiency-mediated up-regulation of β1 integrin may contribute to the defect of neuronal migration in the Vps18-deficient brain. Our results demonstrate important roles of Vps18 in neuron survival and migration, which are disrupted in multiple neural disorders.
- Fudan University China (People's Republic of)
- Yale University United States
- Howard Hughes Medical Institute United States
Neurons, Integrin beta1, Vesicular Transport Proteins, Biological Transport, Active, Brain, Nerve Tissue Proteins, Neurodegenerative Diseases, Cadherins, Mice, Mutant Strains, Mice, Reelin Protein, Neurobiology, Gene Expression Regulation, Cell Movement, Animals, Lysosomes
Neurons, Integrin beta1, Vesicular Transport Proteins, Biological Transport, Active, Brain, Nerve Tissue Proteins, Neurodegenerative Diseases, Cadherins, Mice, Mutant Strains, Mice, Reelin Protein, Neurobiology, Gene Expression Regulation, Cell Movement, Animals, Lysosomes
125 Research products, page 1 of 13
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).37 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
