IRBIS: a systematic search for conserved complementarity
IRBIS: a systematic search for conserved complementarity
IRBIS is a computational pipeline for detecting conserved complementary regions in unaligned orthologous sequences. Unlike other methods, it follows the “first-fold-then-align” principle in which all possible combinations of complementary k-mers are searched for simultaneous conservation. The novel trimming procedure reduces the size of the search space and improves the performance to the point where large-scale analyses of intra- and intermolecular RNA–RNA interactions become possible. In this article, I provide a rigorous description of the method, benchmarking on simulated and real data, and a set of stringent predictions of intramolecular RNA structure in placental mammals, drosophilids, and nematodes. I discuss two particular cases of long-range RNA structures that are likely to have a causal effect on single- and multiple-exon skipping, one in the mammalian gene Dystonin and the other in the insect gene Ca-α1D. In Dystonin, one of the two complementary boxes contains a binding site of Rbfox protein similar to one recently described in Enah gene. I also report that snoRNAs and long noncoding RNAs (lncRNAs) have a high capacity of base-pairing to introns of protein-coding genes, suggesting possible involvement of these transcripts in splicing regulation. I also find that conserved sequences that occur equally likely on both strands of DNA (e.g., transcription factor binding sites) contribute strongly to the false-discovery rate and, therefore, would confound every such analysis. IRBIS is an open-source software that is available at http://genome.crg.es/~dmitri/irbis/.
- Barcelona Institute for Science and Technology Spain
- Centre for Genomic Regulation Spain
- Lomonosov Moscow State University Russian Federation
- Institució dels Centres de Recerca de Catalunya Spain
Base Sequence, Bioinformatics, RNA Splicing, Molecular Sequence Data, Exons, Introns, Drosophila melanogaster, Genes, Sequence Homology, Nucleic Acid, Animals, Humans, RNA, Small Nucleolar, Caenorhabditis elegans, Conserved Sequence, Software
Base Sequence, Bioinformatics, RNA Splicing, Molecular Sequence Data, Exons, Introns, Drosophila melanogaster, Genes, Sequence Homology, Nucleic Acid, Animals, Humans, RNA, Small Nucleolar, Caenorhabditis elegans, Conserved Sequence, Software
103 Research products, page 1 of 11
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
