Absence of far-red emission band in aggregated core antenna complexes
pmid: 33675767
pmc: PMC8204212
Absence of far-red emission band in aggregated core antenna complexes
Reported herein is a Stark fluorescence spectroscopy study performed on photosystem II core antenna complexes CP43 and CP47 in their native and aggregated states. The systematic mathematical modeling of the Stark fluorescence spectra with the aid of conventional Liptay formalism revealed that induction of aggregation in both the core antenna complexes via detergent removal results in a single quenched species characterized by a remarkably broad and inhomogenously broadened emission lineshape peaking around 700 nm. The quenched species possesses a fairly large magnitude of charge-transfer character. From the analogy with the results from aggregated peripheral antenna complexes, the quenched species is thought to originate from the enhanced chlorophyll-chlorophyll interaction due to aggregation. However, in contrast, aggregation of both core antenna complexes did not produce a far-red emission band at ∼730 nm, which was identified in most of the aggregated peripheral antenna complexes. The 730-nm emission band of the aggregated peripheral antenna complexes was attributed to the enhanced chlorophyll-carotenoid (lutein1) interaction in the terminal emitter locus. Therefore, it is very likely that the no occurrence of the far-red band in the aggregated core antenna complexes is directly related to the absence of lutein1 in their structures. The absence of the far-red band also suggests the possibility that aggregation-induced conformational change of the core antenna complexes does not yield a chlorophyll-carotenoid interaction associated energy dissipation channel.
- Jagannath University India
- French National Centre for Scientific Research France
- Université Paris-Saclay France
- University of Amsterdam Netherlands
- Vrije Universiteit Amsterdam Netherlands
Chlorophyll, Spectrometry, Fluorescence, Energy Transfer, Light-Harvesting Protein Complexes, Photosystem II Protein Complex, SDG 6 - Clean Water and Sanitation, Carotenoids
Chlorophyll, Spectrometry, Fluorescence, Energy Transfer, Light-Harvesting Protein Complexes, Photosystem II Protein Complex, SDG 6 - Clean Water and Sanitation, Carotenoids
3 Research products, page 1 of 1
- 2010IsAmongTopNSimilarDocuments
- 2012IsAmongTopNSimilarDocuments
- 2022IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
