Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell
Article . 1997
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell
Article . 1997 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Cell
Article . 1997
versions View all 4 versions

Histone Deacetylases Associated with the mSin3 Corepressor Mediate Mad Transcriptional Repression

Authors: Laherty, C D; Yang, W M; Sun, J M; Davie, J R; Seto, E; Eisenman, R N;

Histone Deacetylases Associated with the mSin3 Corepressor Mediate Mad Transcriptional Repression

Abstract

Transcriptional repression by Mad-Max heterodimers requires interaction of Mad with the corepressors mSin3A/B. Sin3p, the S. cerevisiae homolog of mSin3, functions in the same pathway as Rpd3p, a protein related to two recently identified mammalian histone deacetylases, HDAC1 and HDAC2. Here, we demonstrate that mSin3A and HDAC1/2 are associated in vivo. HDAC2 binding requires a conserved region of mSin3A capable of mediating transcriptional repression. In addition, Mad1 forms a complex with mSin3 and HDAC2 that contains histone deacetylase activity. Trichostatin A, an inhibitor of histone deacetylases, abolishes Mad repression. We propose that Mad-Max functions by recruiting the mSin3-HDAC corepressor complex that deacetylates nucleosomal histones, producing alterations in chromatin structure that block transcription.

Keywords

Saccharomyces cerevisiae Proteins, Transcription, Genetic, Biochemistry, Genetics and Molecular Biology(all), Gene Expression Regulation, Enzymologic, Histone Deacetylases, Protein Structure, Tertiary, DNA-Binding Proteins, Repressor Proteins, Multienzyme Complexes, Transcription factors, Animals, Rabbits, Molecular structure, Transcription, Cells, Cultured, Protein Binding, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    888
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
888
Top 1%
Top 0.1%
Top 0.1%
hybrid