Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Genearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Gene
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Gene
Article . 2007
versions View all 2 versions

Coevolution between cannabinoid receptors and endocannabinoid ligands

Authors: John M, McPartland; Ryan W, Norris; C William, Kilpatrick;

Coevolution between cannabinoid receptors and endocannabinoid ligands

Abstract

Genes for receptors and ligands must coevolve to maintain coordinated gene expression and binding affinities. Researchers have debated whether anandamide or 2-arachidonyl glycerol (2-AG) is a more "intrinsic" ligand of cannabinoid receptors. We addressed this debate with a coevolutionary analysis, by examining genes for CB1, CB2, and ten genes that encode ligand metabolic enzymes: abhydrolase domain containing 4 protein, cyclooxygenase 2, diacylglycerol lipase paralogs (DAGLalpha, DAGLbeta), fatty acid amide hydrolase paralogs (FAAH1, FAAH2), monoglyceride lipase, N-acylethanolamine acid amidase, NAPE-selective phospholipase D, and protein tyrosine phosphatase non-receptor type 22. Gene trees (cladograms) of CB1, CB2, and ligand enzymes were obtained by searching for orthologs (tBLASTn) in the genomes of nine phylogenetically diverse species, aligning ortholog sequences with ClustalX, and applying Bayesian analysis (MrBayes). Mirrored cladograms provided evidence of coevolution (i.e., parallel cladogenesis). Next we constructed phylograms of CB1, CB2, and the ten enzymes. Phylogram branch lengths were proportional to three sets of maximum likelihood metrics: all-nucleotide-substitutions and NS/SS ratios (using PAUP()), and Ka/Ks ratios (using FUGE). Spurious correlations in all-nucleotide-substitutions trees (due to phylogenetic bias) and in Ka/Ks ratio trees (due to simplistic modeling) were parsed. Branch lengths from equivalent branches in paired trees were correlated by linear regression. Regression analyses, mirrored cladograms, and phylogenetic profiles produced the same results: close associations between cannabinoid receptors and DAGL enzymes. Therefore we propose that cannabinoid receptors initially coevolved with a fatty acid ester ligand (akin to 2-AG) in ancestral metazoans, and affinity for fatty acid ethanolamide ligands (e.g., AEA) evolved thereafter.

Related Organizations
Keywords

Models, Genetic, Bayes Theorem, Genomics, Ligands, Evolution, Molecular, Cannabinoid Receptor Modulators, Animals, Humans, Receptors, Cannabinoid, Sequence Alignment, Phylogeny, Endocannabinoids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%