Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Bacteriol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Bacteriology
Article . 1994 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions

Molecular cloning of chromosome I DNA from Saccharomyces cerevisiae: analysis of the genes in the FUN38-MAK16-SPO7 region

Authors: A B, Barton; D B, Kaback;

Molecular cloning of chromosome I DNA from Saccharomyces cerevisiae: analysis of the genes in the FUN38-MAK16-SPO7 region

Abstract

Transcribed regions on a 42-kb segment of chromosome I from Saccharomyces cerevisiae were mapped. Polyadenylated transcripts corresponding to eight previously characterized genes (MAK16, LTE1, CCR4, FUN30, FUN31, TPD3, DEP1, and CYS3) and eight new genes were identified. All transcripts were present at one to four copies per cell except for one which was significantly less abundant. This region has been sequenced, and the sizes, locations, and orientations of the transcripts were in nearly perfect agreement with the open reading frames. Disruptions in eight genes identified solely on the basis of a transcribed region, FUN38, FUN25, FUN26, FUN28, FUN30, FUN31, FUN33, and FUN34, indicated that all were nonessential for growth on rich medium at 30 degrees C. Disruption of FUN30, a gene closely related to RAD16 and RAD54, surprisingly resulted in increased resistance to UV irradiation. No additional phenotypes, other than slow growth, were observed for all other mutants. The distribution of essential genes on chromosome I is discussed.

Keywords

Transcription, Genetic, Ultraviolet Rays, DNA Mutational Analysis, Genes, Fungal, Chromosome Mapping, Dose-Response Relationship, Radiation, Saccharomyces cerevisiae, Sequence Analysis, DNA, Radiation Tolerance, Mutagenesis, Insertional, RNA, Messenger, Chromosomes, Fungal, Cloning, Molecular, Gene Library, Sequence Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Average
Top 10%
Top 10%
bronze