Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2005 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Sp1 Is a Co-activator with Ets-1, and Net Is an Important Repressor of the Transcription of CTP:Phosphocholine Cytidylyltransferase α

Authors: Takashi Izumi; Dennis E. Vance; Sayaka Sugimoto; Hiroyuki Sugimoto; Tomoyasu Hattori; Motoyasu Satou; Koichi Okamura;

Sp1 Is a Co-activator with Ets-1, and Net Is an Important Repressor of the Transcription of CTP:Phosphocholine Cytidylyltransferase α

Abstract

Phosphatidylcholine biosynthesis via the CDP-choline pathway is primarily regulated by CTP:phosphocholine cytidylyltransferase (CT) encoded by the Pcyt1a and Pcyt1b genes. Previously, we identified an Ets-1-binding site located at -49/-47 in the promoter of Pcyt1a as an important transcriptional element involved in basal CTalpha transcription (Sugimoto, H., Sugimoto, S., Tatei, K., Obinata, H., Bakovic, M., Izumi, T., and Vance, D. E. (2003) J. Biol. Chem. 278, 19716-19722). In this study, we determined whether or not there were other important elements and binding proteins for basal CTalpha transcription in the Pcyt1a promoter, and if other Ets family proteins bind to the Ets-1-binding site. The results indicate the formation of a ternary complex with Ets-1 binding at -49/-47 and Sp1 binding at -58/-54 of the Pcyt1a promoter that is important for activating CTalpha transcription. When nuclear extracts of COS-7 cells expressing various Ets family repressors were incubated with DNA probes, binding of Net to the probes was observed. Net dose-dependently depressed the promoter-luciferase activity by 98%, even when co-expressed with Ets-1. RNA interference targeting Net caused an increase of endogenous CTalpha mRNA. After synchronizing the cell cycle in NIH3T3 cells, CTalpha mRNA increased at the S-M phase corresponding to an increase of Ets-1 mRNA and a decrease of Net mRNA. These results indicated that Net is an important endogenous repressor for CTalpha transcription.

Keywords

Cell Nucleus, Binding Sites, Proto-Oncogene Proteins c-ets, Recombinant Fusion Proteins, Cell Cycle, Gene Expression, DNA, Proto-Oncogene Protein c-ets-1, Mice, Genes, Reporter, COS Cells, Chlorocebus aethiops, Mutagenesis, Site-Directed, NIH 3T3 Cells, Animals, Choline-Phosphate Cytidylyltransferase, RNA, Messenger, Luciferases, Promoter Regions, Genetic, Gene Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Average
Average
Top 10%
gold