Insights into the Membrane Interacting Properties of the C-Terminal Domain of the Monotopic Glycosyltransferase DGD2 in Arabidopsis thaliana
pmid: 27951648
Insights into the Membrane Interacting Properties of the C-Terminal Domain of the Monotopic Glycosyltransferase DGD2 in Arabidopsis thaliana
Glycosyltransferases (GTs) are responsible for regulating the membrane composition of plants. The synthesis of one of the main lipids in the membrane, the galactolipid digalactosyldiacylglycerol, is regulated by the enzyme digalactosyldiacylglycerol synthase 2 (atDGD2) under starving conditions, such as phosphate shortage. The enzyme belongs to the GT-B fold, characterized by two β/α/β Rossmann domains that are connected by a flexible linker. atDGD2 has previously been shown to attach to lipid membranes by the N-terminal domain via interactions with negatively charged lipids. The role of the C-terminal domain in the membrane interaction is, however, not known. Here we have used a combination of in silico prediction methods and biophysical experimental techniques to shed light on the membrane interacting properties of the C-terminal domain. Our results demonstrate that there is an amphipathic sequence, corresponding to residues V240-E258, that interacts with lipids in a charge-dependent way. A second sequence was identified as being potentially important, with a high charge density, but no amphipathic character. The features of the plant atDGD2 observed here are similar in prokaryotic glycosyltransferases. On the basis of our results, and by analogy to other glycosyltransferases, we propose that atDGD2 interacts with the membrane through the N-terminus and with parts of the C-terminus acting as a switch, allowing for a dynamic interaction with the membrane.
- Stockholm University Sweden
Spectrometry, Fluorescence, Circular Dichroism, Cell Membrane, Arabidopsis, Glycosyltransferases, Spectrophotometry, Ultraviolet, Nuclear Magnetic Resonance, Biomolecular
Spectrometry, Fluorescence, Circular Dichroism, Cell Membrane, Arabidopsis, Glycosyltransferases, Spectrophotometry, Ultraviolet, Nuclear Magnetic Resonance, Biomolecular
3 Research products, page 1 of 1
- 2011IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
