Powered by OpenAIRE graph

STARCH DEGRADATION

Authors: Alison M, Smith; Samuel C, Zeeman; Steven M, Smith;
Abstract

Recent research reveals that starch degradation in Arabidopsis leaves at night is significantly different from the “textbook” version of this process. Although parts of the pathway are now understood, other parts remain to be discovered. Glucans derived from starch granules are hydrolyzed via β-amylase to maltose, which is exported from the chloroplast. In the cytosol maltose is the substrate for a transglucosylation reaction, producing glucose and a glucosylated acceptor molecule. The enzyme that attacks the starch granule to release glucans is not known, nor is the nature of the cytosolic acceptor molecule. An Arabidopsis-type pathway may operate in leaves of other species, and in nonphotosynthetic organs that accumulate starch transiently. However, in starch-storing organs such as cereal endosperms and legume seeds, the process differs from that in Arabidopsis and may more closely resemble the textbook pathway. We discuss the differences in relation to the biology of each system.

Keywords

Plant Leaves, Biodegradation, Environmental, Species Specificity, Arabidopsis, Starch, beta-Amylase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    479
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
479
Top 1%
Top 1%
Top 1%